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Abstract

Capturing the response behavior of spiking neuron models with rate-based models facilitates the investigation of neuronal
networks using powerful methods for rate-based network dynamics. To this end, we investigate the responses of two widely
used neuron model types, the Izhikevich and augmented multi-adapative threshold (AMAT) models, to a range of spiking
inputs ranging from step responses to natural spike data. We find (i) that linear-nonlinear firing rate models fitted to test data
can be used to describe the firing-rate responses of AMAT and Izhikevich spiking neuron models in many cases; (ii) that
firing-rate responses are generally too complex to be captured by first-order low-pass filters but require bandpass filters
instead; (iii) that linear-nonlinear models capture the response of AMAT models better than of Izhikevich models; (iv) that
the wide range of response types evoked by current-injection experiments collapses to few response types when neurons
are driven by stationary or sinusoidally modulated Poisson input; and (v) that AMAT and Izhikevich models show different
responses to spike input despite identical responses to current injections. Together, these findings suggest that rate-based
models of network dynamics may capture a wider range of neuronal response properties by incorporating second-order
bandpass filters fitted to responses of spiking model neurons. These models may contribute to bringing rate-based network
modeling closer to the reality of biological neuronal networks.

Keywords Rate model - Linear-nonlinear model - Izhikevich model - AMAT model

1 Introduction

The simulation of large networks of spiking neurons on
the scale of cortical columns or even whole areas of the
cortex has become feasible due to advances in computer
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technology and simulator software (Helias et al. 2012;
Kunkel et al. 2014). In order to relate simulation results
to experimental findings, it is important to employ
neuron models that accurately capture actual neuron
dynamics in response to realistic stimuli. Dynamical
models that reproduce the responses of individual neurons
to injected currents go back to the seminal work by
Hodgkin and Huxley (1952). Their conductance-based
model quantitatively described the action potential initiation
and propagation in the squid giant axon in response to
depolarizing currents and spawned many variants and
simplifications that have been analyzed and used in
computational neuroscience ever since. Examples are the
FitzHugh (1961) and the Morris-Lecar model (Morris and
Lecar 1981). On the more abstract side of neuron modeling,
Lapicque’s neuron model (Lapicque 1907), widely known
as the leaky integrate-and-fire (IAF) neuron, models the
membrane potential V() as a passive current integrator
with leak current, emitting a spike whenever V (¢) reaches a
threshold value 6, followed by a membrane potential reset
(Tuckwell 1988; Burkitt 20064, b).
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These simple integrate-and-fire neuron models have
particular appeal to computational neuroscientists because
they capture the essential function of a neuron, while still
being amenable to mathematical analysis in many input and
network scenarios.

Yet, the ideal model would be a neuron model that is both
simple in its dynamical equations and still captures most
of the actual response dynamics of a real neuron to a wide
range of stimuli. To this end, Izhikevich suggested a two-
dimensional neuron model that is able to reproduce at least
twenty different characteristic responses that are commonly
used to classify neuron response types in experiments,
such as tonic, phasic and rebound spiking and bursting,
or adaptation (Izhikevich 2010). The response types are
illustrated in Fig. 1. The stimuli used to induce these
spiking behaviors are direct current injections, ramp current
injections or short direct current steps or pulses as indicated
at the bottom of all panels.

In a network context, however, neurons usually receive
noisy input currents. Moreover, they are known to respond
highly reliably to repeated injections of the same frozen
noise injection, while responses vary widely across trials
when neurons receive identical direct current (Mainen and
Sejnowski 1996). Neurons thus respond stereotypically to
certain temporal input features rather than to mere current
amplitude.

Motivated by such findings, Gerstner and colleagues
showed that nonlinear IAF models, including the spike-
response model and the adaptive exponential IAF model,
can succesfully be mapped to experimental spike data
in a noisy input regime and even have good spike-
time prediction power (Brette and Gerstner 2005; Jolivet
et al. 2006). Yet, the nonlinearity and the number
of parameters in general make fitting a difficult task.
The International Competition on Quantitative Neuron
Modeling has challenged modelers to fit their neuron
models to a set of spike data recorded from neurons
stimulated with noisy input currents (Jolivet et al. 2008).
The resulting neuron models were tested with a noisy input
current that was not included in the training set, and the
predicted spike times were compared to those of the actually
emitted spikes. The multi-timescale adaptive threshold
model (MAT model) introduced by Kobayashi et al.
(2009), a surprisingly simple model with linear subthreshold
dynamics, solved this task best. Despite its simplicity, the
MAT model can generate type-I and type-II excitability,
as well as burst firing. Moreover, an extended version
of the MAT model, the augmented MAT (AMAT) model,
which incorporates threshold dynamics that depend on the
membrane-potential history, is able to reproduce all twenty
spike response patterns described for the Izhikevich model
(Yamauchi et al. 2011). Because of its few parameters and
simple dynamics, the AMAT model has low computational
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cost while providing a large dynamical repertoire, and is
thus highly attractive for large-scale network simulations.

In an actual neuronal network, neurons typically integrate
spikes from thousands of presynaptic neurons, yet not
all spikes might necessarily have a strong impact on the
membrane potential. In many spiking network models, the
effect of individual spikes on the membrane potential is
assumed to be small, and spiking activity asynchronous
and irregular. In this limit it is indeed possible to
substitute the input current by, e.g., Gaussian white
noise or an Ornstein-Uhlenbeck process (Johannesma
1968). However, experimental findings have repeatedly
demonstrated that, even though most synapses are weak,
synaptic weight distributions typically have heavy tails, with
some corresponding to post-synaptic potentials of up to
10mV (Song et al. 2005; Lefort et al. 2009; Avermann et al.
2012; Ikegaya et al. 2013). It is thus important to extend the
analysis of neuronal response dynamics to input spike trains
that elicit large individual post-synaptic potentials.

At an even higher level of abstraction are models that
ignore specific spike times and heterogeneities in network
structure, i.e., rate and field models. In contrast to high-di-
mensional networks of spiking neurons, such models are
often easier to analyze mathematically due to their low
dimensionality, and hence can offer insight into steady
states of network activity and bifurcations that give rise
to complex spatio-temporal phenomena, such as oscillatory
dynamics, traveling waves or activity bump formation.
Prominent examples are neural mass models, such as the
Jansen-Rit model (Jansen and Rit 1995), and neural field
models, such as the Wilson-Cowan model (Wilson and
Cowan 1972), which include spatial interactions between
neurons. In these models, the dynamics of large, possibly
heterogeneous, populations of neurons are substituted by
rate variables in a mean-field manner (Ermentrout 1998;
Coombes 2005).

An important conceptual step in the derivation of these
models is the substitution of the spiking activity of a
neuron in response to a certain input current /(z) by
an appropriate rate function' mapping the input history
{I(s)|s <t} to the response rate at time 7. Common choices
are abstract models such as threshold-linear or sigmoidal
functions F (I (t)) depending only on the input current at
time ¢. The threshold-linear form is often chosen because
of mathematical convenience, but also because it mimics to
first order the gain function of many individual neurons in
experiments (Chance et al. 2002; Blomquist et al. 2009),
while the sigmoidal also models the saturation at very high
firing rates. Yet, parameters of the gain function such as time

IStrictly speaking, this is a functional, not a function, but we
ignore such mathematical detail here as we focus on instantaneous
transformations in what follows.
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Fig. 1 Response types for current input as defined by Izhikevich see the Appendix. Membrane potential Vy, is shown in blue, the thresh-
(2004). This illustration was created with our NEST implementation of old Vi in red, and the input current in green, while emitted spikes
the augmented MAT model (Yamauchi et al. 2011). Some model and are shown as black bars; after Yamauchi et al. (2011). Subfigures are
stimulus parameters differ from those given by Yamauchi et al. (2011), labeled as in Izhikevich (2004, Fig. 1)
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constants, activation thresholds, or slope are often chosen
rather qualitatively, and it is uncertain how well they match
single-neuron properties or biophysics.

A first step towards a stringent comparison of spiking
neuron network simulations with reduced neural mass or
field models is to obtain an adequate quantitative expression
for the neuronal gain function F(I(¢)). It is hence of
interest to understand if and how the activity of individual
spiking neurons in response to arbitrary input currents
can be described truthfully by a rate-model formulation.
Several point neuron models are simple enough to allow
for an analytical derivation of the gain function, assuming
that input currents are Gaussian white noise, sinusoidally
modulated input, or shot noise of a given structure (see,
e.g., Gerstein and Mandelbrot 1964; Stein 1965; Brunel
2000; Brunel et al. 2001; Burkitt 2006b; Richardson 2007;
Richardson and Swarbrick 2010; Roxin 2011; Ostojic and
Brunel 2011). However, more complex nonlinear neuron
models, such as the Izhikevich model or even the AMAT
model, often render such analyses futile, especially in the
presence of large-amplitude post-synaptic current events
that are beyond the realm of perturbation-based theories.
This holds to an even larger degree for the second step
towards a stringent comparison of spiking network and
neural field models, namely capturing the temporal response
properties of the models. A thorough understanding
of complex nonlinear models thus requires simulation
studies.

We provide here an analysis of the response to spike train
input of the models proposed by Izhikevich (2003b) and by
Yamauchi et al. (2011), following the approach by Nordlie
et al. (2010) and Heiberg et al. (2013). Both models actually
represent an entire class of models that can be tuned to
a wide range of reponses by adjusting model parameters.
We will thus refer to the Izhikevich and AMAT model
classes, respectively, when we refer to the set of equations
and spike-generation rules, while we will call each of the
approximately 20 different parameterization a model. Each
of the two model classes comprises some 20 models.

Table 1 Summary of Izhikevich model; for parameters, see Table 3

In Section 3.1 we present how the different models
respond to spike train input.

In Section 3.2, we present fits of a linear-nonlinear firing-
rate model to the spike responses of Izhikevich and AMAT
models to stationary and temporally modulated stochastic
spike trains across a range of input rates, synaptic weights,
and modulation frequencies and amplitudes under different
background noise regimes.

We group the different models according to the filter
parameters obtained in Section 3.3, before we in Section 3.4
explore how well the linear-nonlinear rate models capture
the response of their spiking counterparts to novel stimuli,
such as steps in the input firing rate and more complex
temporally modulated input.

Finally, in Section 3.5 we investigate whether we can
generalize models fitted to a specific input regime to a
broader set of stimuli, before we summarize our findings in
Section 4.

2 Methods
2.1 Neuron models

We study response behavior for two neuron model classes,
the Izhikevich model (Izhikevich 2003b) and the augmented
MAT model (Yamauchi et al. 2011). As both model classes
are well described in the original publications, we just
summarize them briefly in Tables 1 and 2. Both models
are able to reproduce 20 of the most prominent features of
biological spiking neurons in response to injected current
input as illustrated in Fig. 1. These response types were
first summarized in tabular form by Izhikevich (2004); see
also Markram et al. (2004). Tables 3 and 4 present the
parameter values required to obtain the model responses
displayed for each class; note that certain models only
differ in the stimulus injected, while neuron parameters are
identical. All models are implemented on a fixed time grid
(dt = 0.1 ms).

Type Two-variable non-linear dynamic system: membrane potential V', recovery variable U

Subthreshold dynamics
U =a®V@®) - U®)

V() = 5 VE) + 5V (1) + 140 — U (1) + Leyn(t) + Tog (1) + Iext (1

(@)

Integrated using forward Euler algorithm on fixed time grid #.

Spiking
Refractoriness No explicit refractory time
Synapses S-current pulses Iy, (1) =& )

Noise current

Parameters

A spike is emitted at #; if V(f) > Vi, and variables are reset according to V (tx) <— ¢, U(tx) < U () +d

. Wbt — fn,j), where {f, ;} are spike times of neuron n

Approximate Gaussian white noise Iyg(t), cf. Egs. (8) and (9).
a, b, c,d, I, & (model-dependent weight factor)
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Table2 Summary of AMAT model; for parameters, see Table 4

Type Leaky integrator with membrane potential V and adaptive threshold Vi,

Subthreshold dynamics V(@) = — ﬁ (V@) — EL) + CLmlsyn ) 3)
V) =Y, Ht —10) + B [1(, K()V (2 = 5)ds + @
H() = (a1e™/™ + aze™ /) O(1) 5)
K(s) = se™s/™ O(s) 6)

Integrated using exact integration on fixed time grid f, see Appendix. ®(¢): Heaviside step function.

A spike is emitted at # if V (f;) > Vin(#x) and neuron is not refractory. No reset upon spike.
After a spike at #;, the neuron cannot fire a new spike until #; + 7. V, Vin, H, and K evolve freely

Exponentially decaying currents Iy () =3, - wpe™ —in. )/ Ty O — tAn,.,') where Toyn" € {TsynE, Toyn,1)

n, j

Spiking
Refractoriness
during the refractory time.
Synapses
Parameters Tm, R, B, ®1,2, T1,2, TV, Tref> Tsyn,Es Tsyn,I

We integrate the Izhikevich model class using the
forward Euler algorithm as in the original publications on
the model. Izhikevich (2003b) used a 1 ms time step, but
splitting the update of the membrane potential (but not the
recovery variable) into two steps of 0.5 ms “for numerical
stability”. Figure 1 of Izhikevich (2004), on the other
hand, was generated using different time steps for different
cases, ranging from 0.1 ms to 0.5 ms without substepping,
as evidenced by the source code used to generate that
figure (Izhikevich 2003a). We extracted model parameters

as shown in Table 3 from that source code, including
an external current .y injected into the model for some
variants in addition to the stimulus current.

Izhikevich’s source code also revealed that model
variants G, L, and R use other equations than Egs. (1)—(2)
for V(t) or U (t). We therefore excluded these variants from
our study. We also excluded variants I and O, since they
have the same parametes as variants A and M, respectively,
and differ only in the test stimulus injected to create Fig. 1
of Izhikevich (2004).

Table 3 Parameters for Izhikevich model class obtained from code published by Izhikevich (2003a)

Label Model a b c d & Iext
A Tonic spiking 0.02 0.2 —65 6 15.1 0
B Phasic spiking 0.02 0.25 —65 6 43 0
C Tonic bursting 0.02 0.2 -50 2 15.1 0
D Phasic bursting 0.02 0.25 —55 0.05 43 0
E Mixed mode 0.02 0.2 —55 4 15.1 0

F Spike frequency adaptation 0.01 0.2 —65 8 15.1 0
G* Class 1 excitable 0.02 —0.1 —55 6 49 0
H Class 2 excitable 0.2 0.26 —65 0 5.6 -0.5
I* Spike latency 0.02 0.2 —65 6 15.1 0

J Subthreshold oscillation 0.05 0.26 —60 0 1.8 0
K Resonator 0.1 0.26 —60 -1 24 0
L* Integrator 0.02 —0.1 —55 6 49 0
M Rebound spike 0.03 0.25 —60 4 4.5 0
N Rebound burst 0.03 0.25 —52 0 4.5 0
O* Threshold variability 0.03 0.25 —60 4 4.5 0

P Bistability 0.1 0.26 —60 0 0.87 0.24
Q Depolarizing after-potential 1 0.2 —60 —21 17.8 0
R* Accomodation 0.02 1 —55 4 1 0

S Inhibition-induced spiking —0.02 -1 —60 8 4.5 80
T* Inhibition-induced bursting —0.026 -1 —45 -2 4.8 80

Labels refer to subfigure labels in Izhikevich (2004, Fig. 1). Models A and I, G and L, and M and O, respectively, share the same parameters and
differ only in their input parameters. Instances marked with an asterisk were not included in the study due to repeated parameters sets, non-standard
model equations or pathological behavior; see text for details. Common parameters: Vi = 30mV, V(t = 0) ~ U(=70mV, 30 mV)
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Table 4 Parameters for AMAT model class, based on Yamauchi et al. (2011, Table 1)

Label Model o o) B

A Tonic spiking 10 0 0

B Phasic spiking 10 0 -0.3
C Tonic bursting —0.5 0.35 0

D Phasic bursting -0.5 0.35 -0.3
E Mixed mode -0.8 0.7 0

F Spike frequency adaptation 10 1 0

G Class 1 excitable 15 3 0

H Class 2 excitable 15 —0.05 0

I Spike latency 10 0 -1

J Subthreshold oscillations 1 0 0.2
K Resonator 10 0 0.5
L* Integrator 10 0 0

M Rebound spiking 10 0 -2.5
N Rebound bursting -0.5 0.35 —-2.5
(6] Threshold variability 10 0 -0.5
P Bistability 20 —-0.4 0

Q Depolarizing after-potential 25 -1 0

R* Accomodation 10 0 -0.5
S Inhibition-induced spiking 20 0 2

T Inhibition-induced bursting —-0.5 0.35 2

Note that models A and L and O and R, respectively, have identical parameters, whence L and R are not included in the study (marked with
asterisk). Common parameters: £y, = —70mV, o = —65mV, Cy, = 200pF, ty, = 10ms, 71 = 10ms, 7 = 200ms, Ty = 5Sms, Tref = 2 ms,
Tsyng = 1 ms, Typ = 3ms, V(t = 0) ~ U(=70mV, —65mV). See text for difference between NEST parameterization and that in Yamauchi

etal. (2011)

Furthermore, we observed that response patterns depend
on the precise time step used. In particular, the response
for case T, Inhibition-induced bursting, is unstable for time
steps shorter than 0.5 ms. We therefore also excluded case
T from our analysis.

The Izhikevich model class is not defined with consistent
units in the original publication (Izhikevich 2003b). While
a time unit of milliseconds is implied and membrane
potential is specified in millivolts, no units are given for
the parameters or explicit constants. The model equations
imply that input currents have units of mV/ms, which is
rather exotic. In the spirit of Izhikevich (2003b) we therefore
treat all quantities except time and membrane potential as
unitless for the Izhikevich model class.

The AMAT class is implemented in NEST as model
amat2_psc_exp using exact integration (Rotter and
Diesmann 1999). The implementation follows the NEST
convention of parameterizing the membrane potential
equation Eq. (4) in terms of membrane time constant Ty,
and membrane capacitance Cy, and an explicit reversal
potential Ep, while Yamauchi et al. (2011) parameterize
their Eq. 1 in terms of 7, and membrane resistance R
and define £, = OmV. The parameterizations are related
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by Cn Tm/R and a shift of the membrane potential
V and the resting value of the threshold w by Er. Some
parameter values were adjusted to be able to reproduce
Figs. 6 and 7 in Yamauchi et al. (2011) as discussed in the
Appendix. Model variants L and R are excluded from the
study as they have identical parameters to variants A and O,
respectively.

In all simulations reported here, a single neuron is
stimulated with spike train input. For the Izhikevich model
class, this spike input results in instantaneous jumps in the
membrane potential v. For the AMAT class, each incoming
spike evokes an exponentially decaying synaptic current.
For details, see Tables 1 and 2 and Section 2.2.

Output spikes are recorded with NEST device
spike_detector.

2.2 Stimulation

We briefly summarize here the sinusoidal stimulation
protocol and response characterization based on Nordlie
et al. (2010) and presented in detail in Heiberg et al.
(2013). More general stimulation protocols are described in
Section 2.5.
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Model neurons are stimulated with sinusoidally modu-
lated inhomogeneous Poisson process spike trains (Fig. 2)
with rate (or intensity)

a(t) = ag + ay Sin(27 fyimt) - @)

Mean rates ap, modulation depth a;, and modulation
frequency fyim are varied systematically; modulation depth
is limited to 0 < a; < ap to avoid rectification. We
used NEST device sinusoidal _poisson_generator
to generate the input spike trains.

The weights w > 0 of the synapses transmitting the
stimulus spike train a(¢) are varied from about 10% to about
75% of the synaptic weight wy required if a single incoming
excitatory spike shall evoke a threshold crossing from rest.
For the AMAT model class, wg is the same for all model
variants and we use weights between 100 pA and 900 pA in
our experiments.

For the Izhikevich model class, in contrast, model
parameters do influence the response to isolated spikes. We
therefore define a weight factor & for each model variant as
the smallest weight for which a single excitatory input spike
triggers the spike initiation process. Synaptic weights w are
set to fractions of this value, ranging from 0.1 to 0.75, i.e.,
within the same range as for the AMAT model.

In addition to the resulting current stimulus, Igim (¢), we
consider stationary noisy background input currents Iyg(?),
representing unspecific weak network input. This allows us
to study neuronal responses to Igim(¢) in different input
scenarios. The full input a neuron receives is thus given by
I(t) = Isim(t) + Ipg(t). We characterize the background
current by its mean /1y, and standard deviation oyp,.

The NEST implementation of the Izhikevich neu-
ron model is equipped with instantaneous current-based
synapses. Assuming high rates and small synaptic strength,
balanced spiking input can be approximated well by Gaus-
sian white noise. We thus inject approximate Gaussian

a)

Qo

‘ v .
. .
» >
> >

Fig. 2 A model neuron is driven by a spike train with sinusoidally
modulated rate a () with mean ag, modulation depth a;, and frequency
fstim, cf. Eq. (7). As a first-order approximation, the output spike train
of the neuron is characterized by the sinusoidally modulated response
firing rate r(¢) with mean rq, amplitude r{, frequency fim and phase
¢, cf. Eq. (10). Adapted from Nordlie et al. (2010), Fig. 1

white noise realizations of defined mean pupe and standard
deviation opg using NEST’s noise_generator”.

The AMAT model, as used here, has current-based
exponential synapses with characteristic time constants
Teyng = Ims and Tgyn1 = 3ms. We inject background
current as Poisson spike trains through synapses with small,
fixed weight wgp, = 1pA and wrpg = —4/3 pA,
respectively, using NEST model poisson_generator.
The resulting noise input current has mean and standard
deviation

Ubg = WEbgVETsyn,E + WIbgVITsyn,I (8)

Obg = \/w]%:’bgVETsyn,E/z + wlz,bgvl'fsyn,l/2 . )

For given upe and opg, we obtain noise input rates by
solving Egs. (8)—(9) for vg and vy.

We consider three background current regimes: first the
case without additional background current Iy () = 0pA,
where all spiking activity is purely stimulus induced. In
the second case, Iyg(?) is chosen such that up, = 0pA,
and opg is large enough to elicit spiking activity with
background input alone, i.e., if Iyim () = OpA. In the third
case, we consider a net inhibitory background current, with
tpg < OpA and sufficient standard deviation oy to again
elicit baseline spiking in absence of Iy (). While the first
scenario can be considered a typical situation for neurons
in slice preparations, the latter two mimic the situation in
vivo, e.g., in cortical layer II/IIl where ongoing spiking
activity is sparse (see e.g., Sakata and Harris 2012; Petersen
and Crochet 2013) and input currents are balanced or even
inhibition dominated (Haider et al. 2013).

2.3 Characterization of response properties
2.3.1 Sinusoidal rate model

We characterize the response of the neurons by a sinusoidal
rate model

r(t) = ro +r1 cos(2x fsim? + ¢1)

+ D rm coSQm fiml + Gm) (10)

m=2

as illustrated in Fig. 2. For a purely linear response, rg
represents the background firing rate of the neuron, r; the
stimulus response amplitude (with phase shift ¢1), and we
expect r,, = 0 for all higher harmonics (m > 2). Any
nonlinearities in the system will typically be associated

2The current generated is stepwise constant during each d¢r = 0.1ms
time step, with Gaussian-distributed amplitude.
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with power in the higher harmonics. We consider power at
harmonics as significant (z-test, 99% confidence level) if

Fm > Fait = B +234% (1)

where B is the estimated background power of the
spike train between the harmonics and ¥ the weighted
standard deviation of the spike train power spectrum across
frequencies. For details, see Section 2.2.2 of Heiberg et al.
(2013).

2.3.2 Linearity

We proceed as follows to characterize the linearity of the
firing-rate curve in response to stationary input: We obtain
the firing-rate curve ro = f(ag) for a given neuron model,
noise regime and synaptic weight by measuring the output
rate ro as a function of stationary input rate ag in the absence
of modulation (a; = 0). To characterize the linearity of f
over an interval [«, 8], we define the linearity measure

B _ 2
7, _ fa [f(x;_iu)] dx /62 (#) ’ (12)

as the normalized mean square difference between f(x)
and £(x), the best linear fit to f(x) over [«, B]. If f(x) is
perfectly linear, we have L 1 = 0, while 1:1 = 1 means that
the average squared distance between firing-rate curve and
linear fit is equal to the mean value over the interval. Larger
values of L are difficult to interpret, though. We therefore
define

1

Ly = = 13

=L (13)
as linearity measure. L1 = 1 indicates perfect linearity,
L1 = 1/2 a deviation from linearity equal to the mean

value, while L approaches O for large deviations. For a
given mean rate ap and modulation depth a;, we evaluate
linearity over [«, 8] = [ag — a1, ap + a1], i.e., the range of
rates spanned by the temporally modulated input.

2.4 Rate model description

The response of a linear, time-invariant (LTI) system to any
input can be calculated as a convolution of the input and the
impulse response of the system. A wide class of non-linear
systems can be described by a linear convolution of the
input with a kernel %(¢) followed by a non-linear activation
function g(-), so that the response is given by

r(t) = g(h(t) xa(r)) . (14)

To test how well this applies to the neuron models
studied here, we fit linear-nonlinear firing-rate models to the
responses of the spiking neuron models and compare firing-
rate predictions from the linear-nonlinear models to those of
the fitted spiking models. We summarize the derivation of
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the firing-rate model below, based on Heiberg et al. (2013)
and Nordlie et al. (2010).

For each neuron, we find the activation function g(-)
and the kernel h(t). For constant input, a(t) = ag, the
convolution becomes the identity operation, provided the
kernel is normalized ( f h(t)dt = 1). We determine g(-) by
measuring the response to stationary input, ro = g(ag) for
arange of ap and obtain a continuous representation of g(-)
by interpolation (linear B-spline).

To obtain the kernel h(¢), we linearize the activation
function around a given working point (ag,ro). The
response to a(t) = ag + ays(t) can then be expressed as

r(t) = g(h(1) * (ao + ais(1)))

~ ro(ao) + ho(t; ao, ar) * (ars(1)) , (15)

where the linear impulse response function
ho(t; ag, a1) = g'(ao)h(t; ap, a1) =: yh(t; ag, a1) ~ (16)

combines the normalized kernel with the linear gain y.
In general, this approximation is only valid for small
deviations from the working point. However, the limits are
not known a priori. For brevity of notation, we will usually
drop the explicit reference to stimulus parameters ag and a;
below.

We obtain the transfer function, i.e., the Fourier
transform of the linear impulse response hg(t), from the
model responses to sinusoidally modulated input (s(¢) =
sin 27 fsimt, cf. Eq. (7))

Ho(fstim) = ”(Z—S]‘im)ew(fm) an

where 71 (fsim) and ¢ ( fyim) are the Fourier amplitude and
phase of the response, respectively.

In Nordlie et al. (2010) and Heiberg et al. (2013), first-
order low-pass filters with delay provided adequate fits to
the empirical frequency responses. Here, more complex
filter models are needed to fit additional response features.
In particular, we expect a second filter time constant 7, =
1/(2nm f.) to be needed to model some of the response
types illustrated in Fig. 1. We choose to combine low- and
high-pass components of the filter as a sum:

1 V2

+
il S
1-'_lfc,l 1+lfc,2

This form allows for a representation of the filter through
a system of linear differential equations, see Section 2.4.1.3

727Tl'fA (18)

Hosum(f) = yie

3We also explored combining the terms in product form

- . 1
Ho prod(f) = yle_szA G (1 - y.z 7 ) ’
1 + l le 1 + ZE

but did not observe significantly different results.
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The filter kernels were fitted to the empirical transfer
function to capture it with as few parameters as possible.
For each set of stimulus parameters (ag, ai, w, W, o),
we obtained fits for the parameters y1, fc.1, Y2, fc.2 and
A. Fitting was performed using basin-hopping optimization
provided by the SciPy Optimize toolbox with L-BFGS-
B minimization (Jones et al. 2001). To avoid pathological
solutions, we imposed the following constraints

0.25ms < 7,12 < 175ms (19)
< 0.909Hz < f. 12 < 636.6Hz 20)
0<A<75ms. 2D

If a fit resulted in f; 1 > fc 2, we swapped frequencies and
gain coefficients

fets feo < fe2, fer (22)
YL Y2 < vive /v (23)

so that f.1 and f; 2, respectively, are always the lower
and upper characteristic frequencies of the filter. For each
parameter combination, we performed 60 independent fits
from different starting points and retained the best fit. We
also performed 15 independent fits for a pure lowpass
filter, but these never yielded better results than fits to the
bandpass filter defined by Eq. (18).
We now define the linear-nonlinear rate model as

rNL(?) = max(0, g(h(r) * a(1))) , (24)
with the normalized kernel
ho(t)
hit) = ———~~2 25
© Yi(l 4+ ) 2

and correspondingly in Fourier space. We take the
maximum solely to avoid negative rates that may result in
rare cases from extrapolation of the activation function g(-).
This kernel depends on the stimulus parameters ag and a;
used to construct it, but we drop this dependence for clarity
of notation; the actual range over which a kernel is useful is
explored in Section 3.

2.4.1 Differential-equation representation

The filter I:IO,SUM( f) corresponds to a sum of low-pass
filters in the time domain. For this model, the linear-
nonlinear model of Eq. (14) can be mapped to a set of delay
differential equations using the linear chain trick (Nordbg
et al. 2007).

In particular, in the time domain the filter is given by

ho,sum(t +d) = ho,1(t +d) + ho2(t +d)

=0(@) (ﬂel/” + we””) (26)
T n

with Heaviside step function ®(¢). We introduce

u(t) = (a* hosum)(t) = u(t) + uz(t) 27

with
ur(t) = (a*ho1)(®) and wus(t) =(ax*ho2)®). (28)

Straightforward differentiation of the two temporal
kernels yields

iy (1) = —“‘r—f’) —i—a(t))r/—: (29)
and 1ir(t) = —”27—3) +a(r)’/lt—:2. (30)

From this we can solve for u(t) = ui(t) + uy(¢t) and
the full rate dynamics then follows by application of the
nonlinearity g

r(t) =g () . €29

The advantage of the differential representation Eq. (29) lies
in the fact that it is local in time, whereas the representation
by convolution in general relies on knowledge of the
complete history of the dynamics.

2.5 Tests against spike trains

We compare the response properties of our rate-based model
against spiking neuron models as follows. We use synthetic
(Section 2.5.1) or experimentally recorded (Section 2.5.2)
spike trains S(¢) as test input. Spiking neuron models are
driven by these trains directly and their output spike trains
R(t) are recorded as described in Section 2.6. We then use
the fixed-kernel density estimation method by Shimazaki
and Shinomoto (2010) with 0.05 ms bin width to estimate a
continuous output firing rate rgpike(#). This is the reference
against which we test the rate-based model.

To obtain the response of the rate-based model, we either
use the known rate of the synthetic input spike trains or
obtain a continuous input rate function a(¢) from the input
spike trains S(#) using the fixed-kernel density estimation
method. Applying Eq. (14) to this rate yields the reponse of
the rate model ryaee (7).

We repeat each simulation experiment with five different
random seeds and retain only results for which the optimal
kernel width obtained by the densitiy estimation methods
is 15 ms or less, as wider kernels would lead to an undue
smoothing over time.

The difference between responses obtained from rate-
based and spiking models is then defined as the mean
squared error normalized by the variance of the response of
the spiking model (Pillow et al. 2005)

E f()T (rrate(t) - rspike(t))z dt

r =
fOT (rspike([) - fspike)2 dr

(32)
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Table 5 Poisson spike train rates applied during different intervals

Interval [ms] 0-600  600-1000 1000-1200 1200-1500

Rate [1/s] 100 200 40 150

Rates change instantaneously at interval boundaries

where 7gpike is the average response rate of the spik-
ing model. Corresponding to the linearity measure L
(Section 2.3.2), we define

1
E, = = 33
"= 1Y E (33)
as quality measure. E, = 1 indicates perfect agreement,
E, = 1/2 an error equal to the variance, while E,

approaches 0 for large deviations between spiking and rate
model response.

2.5.1 Tests with synthetic spike trains

We first test models using a Poisson spike train input
with step changes in rates. Stimulus parameters are
given in Table 5. Spike responses are obtained by
simulating a population of 4,096 independent model
neurons driven by one Poisson process each. The resulting
4,096 output spike trains are pooled to estimate the output

rate rpike (1.

2.5.2 Tests with realistic spike trains

To test the performance of the rate models in response to
realistic spike trains, we drive model neurons by spike trains
recorded from retinal ganglion cells (RGCs) in cat (Casti
et al. 2008). Their data set contained 128 spike trains of
8 s duration recorded during different trials, characterized
by low baseline firing and fast transients as illustrated in
Fig. 3. Because trains from the first trials in the dataset have
noticeably lower average firing rates than those from later
trials, we only use the last 96 spike trains with an average
firing rate of 18.3 &£ 1.3 spikes per second.

The Izhikevich models in particular responds weakly to
these spike trains in many cases. We therefore increase the
rate of the input spike trains by merging pairs of spike
trains, resulting in a total of 48 input spike trains with
average rates of 36.6 spikes per second. We then drive 48
model neurons independently with one spike train each for
8000 ms and pool the resulting output spike trains for output
rate estimation.

2.6 Simulation

Simulations for all model configurations are performed with
the NEST Simulator (Gewaltig and Diesmann 2007; Plesser
et al. 2013).

In practice, we simulate N trials by creating N mutually
independent Poisson-generator—neuron pairs in a single
NEST simulation. Membrane potentials are randomized
upon network initialization and data collection is started
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Fig.3 Spike raster and rate profile for retinal ganglion cell (RGC) data used to test model performance. Rates were estimated by means of kernel
density estimation (Shimazaki and Shinomoto 2010), using the fixed kernel method
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only after an equilibration period of 1 s simulated time. All
simulations are performed with a spike-time resolution of
0.1 ms.

Simulations underlying model fitting are performed
using NEST 2.3.r10450, while some scoring of model
responses according to Eq. (33) was performed using
NEST 2.8.0. Trials are configured using the Neuro-
Tools.parameters package (Muller et al. 2009). Data analy-
sis is performed using NumPy 1.7.1-1.11.1, SciPy 0.18.1,
Pandas 0.11.0-0.18.1 and Matplotlib 1.2.1-1.5.3 under
Python 2.7.

3 Results
3.1 Response to spike train input

To gain a first impression of the basic response properties of
the models, we show the spike responses to stationary and
sinusoidally modulated Poisson input in Figs. 4 and 5 for
Izhikevich and AMAT models, respectively. Each raster plot
shows the response of 30 unconnected neurons, half driven
by stationary and half by sinusoidally modulated Poisson
spike trains after an equilibration phase of 1000 ms. Each of
the 30 neurons receives different realizations of input spike
trains and noise, but the same trains and noise are used for
all models.

As spiking and bursting variations are included as
separate response types in the model classification (Fig. 1),
we illustrate the burstiness of the responses by marking
spikes fired within dT = 5 ms of each other as belonging
to a burst, corresponding to the upper limit of intra-burst
intervals in LGN (Funke and Worgotter 1997, p. 71).

The models that exhibit their characteristic behaviour
(Fig. 1) based on “simple” excitatory input current shapes
(e.g., steps, ramps, pulses) generally behave as expected
when driven by Poisson spike trains; spiking neurons
primarily spike and bursting neurons burst, but the nuances
of individual models are less visible in the spiking patterns
(e.g. tonic vs phasic) due to the input variability. Models
that are based on more specific input current pattens or
consistent inhibitory input (i.e., bottom rows) do to a
lesser extent receive the required input and respond in a
less characteristic manner, some even seem erratic (e.g.,
Fig. 5Q). Note, however, that the figures illustrate responses
at a single input rate and noise regime combination and
that the models to varying degree are sensitive to these
conditions.

In contrast to the 20 markedly different responses to
current injections (Fig. 1), responses to spiking input show
more similar patterns across models, differing in the overall
response rate and the proportion of spikes belonging to
bursts.

While some Izhikevich and AMAT models that show
identical responses to current injections also respond
similarly when driven by spiking input (e.g., top two rows),
we observe some with very different response patterns (e.g.,
depolarizing after-potential (Q) and inhibition-induced
spiking (S)) across the two model classes.

3.2 Linear-nonlinear models

We now obtain the linear-nonlinear models as defined by
Eq. (24).

3.2.1 Activation functions

We first obtain the activation function g(-) by fitting a linear
B-spline to the response to stationary input, ro = g(ap),
varying ag from 0s~! to 1000s~! in steps of 10s~!. This
yields one activation function fit for

— each model (14 models for the Izhikevich model class,
18 for the AMAT model class);
— each background noise regime

nonoise u=0,0=0

balanced noise Izhikevich: u = 0,0 = 0.1, AMAT:
u = 0pA, o = 100pA

biased noise Izhikevich: u = —0.1, 0 = 0.2, AMAT:
u = —100pA, o = 200pA;

— each synaptic weight (Izhikevich: 0.1, 0.25, 0.5, 0.6,
0.75; AMAT 100pA, 300pA, 500pA, 700pA, 900pA).

We thus obtain a total of 210 activation functions for the
Izhikevich model class and 270 for the AMAT model class.

The top row of Fig. 6 shows the activation function
for the Tonic Spiking and the Phasic Bursting models for
the Izhikevich and AMAT model classes, respectively, for
all three noise regimes. The spike rates obtained from the
simulations are fitted very well by the B-splines. This
holds for all models except model S in the Izhikevich
class (inhibition-induced spiking), which has rather noisy
activation curves with extremely high rates under certain
conditions (above 1000 s~1); data not shown.

Before we investigate the response of the models to
temporally modulated stimuli, we briefly explore the lin-
earity of the activation functions around different working
points ag = {50s~!,100s~!,200s7!,400s~", 80057}
and modulation amplitude a; = {0.25,0.5,0.75, 1} x ag
about the working point. A working point at ag = 2005~
with modulation amplitude a; = 100s~! is shaded in the
top row of Fig. 6 for illustration. Figures 7 and 8 show the
linearity score L for each of the 20 (ag, a;) combinations
for each response curve.

For the Izhikevich neurons, the stationary linearity metric
L indicates that strong synaptic weights w, large mean
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Fig.4 Spike responses of Izhikevich models driven by stationary (rate
ag = 400s™1) or sinusoidally modulated (rate ap = 400 s~1, modu-
lation amplitude a; = 400s~!, modulation frequency 10 Hz) Poisson
spike trains impinging with synaptic weight w = 0.6 pA weighted with
&, and noise (u = OpA, o0 = 0.1 pA). The upper part of each panel
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shows the response of 15 neurons driven by different sinusoidally mod-
ulated spike trains, the lower part the response of 15 neurons driven by
different stationary trains after 1 s of equilibration time. Isolated spikes
are shown in blue, clustered spikes within d7° = 5ms from another

spike in red
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Fig.5 Spike responses as for AMAT models as in in Fig. 4, using weight w = 200 pA, and noise with © = OpA, and o = 100 pA

input rates ap, and small modulation amplitudes a; give  current, but also its variance. This leads to a linearization of
the most linear responses. Larger weights and mean rates  the activation function and moves the activation threshold
not only increase the mean input of the Poisson input  towards smaller rates (see also Chance et al. 2002).
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Fig. 6 Response properties for exemplary model neurons. Columns
show from left to right response properties of Izhikevich and AMAT
tonic spiking and Izhikevich and AMAT phasic bursting models. Top
row: stationary output firing rate response r¢ as function of input rate
ap for three noise regime levels (blue: no noise, green: balanced noise,
red: biased noise). Light symbols show responses from simulations,
solid lines the fitted B-splines. Second row: Frequency response to
sinusoidally modulated Poisson input with mean ag = 200 s~! and
modulation amplitude a; = 100 s~! as function of modulation fre-
quency fsim; thick solid lines: first harmonic ry, thick shaded lines:
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fitted filter Ho(f), thin solid lines: second harmonic r,, dotted lines:
significance level rq;. Mean input rate agp and modulation range ap=+a
are marked gray in the top row. Fit parameters are given in Table 6.
Third row: Response of spiking model (thin solid lines) and rate-model
prediction (light thick lines) to Poisson spike trains with rate 100 s~
for t < 700 ms and 300 s~! for r > 700 ms. Fit quality E, shown as
inset. Bottom row: Response to realistic spike trains, 400 ms section
starting at 3000 ms (cf. Fig. 3) with the same line types as for step
responses. Connection weight w from left to right: 0.75, 700, 0.75, 500
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Fig. 7 Linearity measure L; for the Izhikevich model class for dif-
ferent model parameterizations (major columns), and five different
synaptic weights for each of three noise regimes (major rows). Each
major row/column block shows data for five different average input
rates (ag = {50, 100, 200, 400, 800}s~1), minor rows) and four dif-
ferent modulation amplitudes (a; = {0.25, 0.5, 0.75, 1.0} x ag, minor
columns), as indicated by the small coordinate axes shown for one
major square. Thus, the bottom left minor square of each major square

Furthermore, firing-rate modulation amplitudes are more
likely to stay within a single region of the sigmoidal firing
rate curve for small a1, and are thus more likely to adhere to
a linear fit.

The stationary linearity metric L; for the augmented
MAT model indicates overall more linear behavior, but
the same general pattern of parameter dependence can
be seen (Fig. 8). One notable difference is the saturation
of the AMAT model at output rates of 500 s~'—due to
the absolute refractory time of 2 ms—that adds another
source of non-linearity in the firing rate curves for some
neurons.

3.2.2 Transfer function and linear filters

We obtain empirical transfer functions according to Eq. (17)
for 20 combinations of working point and modulation depth
(ag, a1) for each model, noise regime and synaptic weight
using the approach described in detail in Heiberg et al.

is the L value computed over 37.5 s7! < a < 625571, while the
upper right minor square is the L1 value computed over 0s~! < a <
1600s~!'. L1 = 1 indicates perfect linearity of the firing-rate curve
F(a) over the relevant input range, cf. Section 2.3.2. Grey indicates
missing data, either because neurons were unresponsive or because the
model variants are described by non-standard differential equations or
have duplicate parameters. Blue, green, and red squares correspond to
the examples shown in the first and third columns of Fig. 6

(2013, Section 2.2.2), measuring the model response at
28 different stimulation frequencies fgim, logarithmically
spaced from 1Hz to 1000Hz. We then fit the linear
filter I:Io,SUM(f) according to Eq. (18) as described in
Section 2.4, obtaining fit parameters (f¢ 1, fe.2, Y1, V2, A)
for each model and stimulation parameter combination.
Note that y; is fully captured by the activation function,
and therefore does not explicitly enter the linear-nonlinear
model we construct here, cf. Eq. (25).

The second row of Fig. 6 shows the resulting transfer
functions and fitted kernels for the same models and
conditions as the activation functions discussed above;
see Table 6 for fit parameters. The examples reveal
bandpass behaviour for three out of four cases, which also
show significant power in the second harmonic r,. The
exception is Tonic spiking for the AMAT class, which
shows lowpass behavior and no significant power in r;.
Phasic bursting shows a second peak in the spectrum around
200 Hz (Izhikevich) and 500 Hz (AMAT), which our fitted

@ Springer



J Comput Neurosci

Fig.8 Linearity measure L for (1,0), w L
the AMAT model; the figure is T T T — T T — 1.0

constructed as Fig. 7 (-100, 200), 900 | |

700 |' |
500 g 1l 4oo

300 | |

100 | |
{08

(0, 100), 900 [ i

700 |" |
500 | g 1| o7

300| i
100 N EE

(0, 0), 900 | J
0.5

700 |' |
500 | a | o4
300 | » - = ﬂ - | 0.3
moi-----ai - 0.2
1 il 1 1 00

QW W\ o 9.
Q@&x@“%&\“%&\‘\g ‘\’,000(&@\&@ (\?o‘\&@ Q\p(‘%o“%\\\y‘;,\\\::&\?’ Q@ﬁ?,&&
QLA POREIREN Yoo *C \ae SN %\9&&0 SR
RO Pe"\/e‘ﬂ’ \ OSe® oy
4 Ol e oS O «\0 1
{(\(e N R QO™
X 3 W
2 OQ’QO R X

bandpass filter models (thick light lines) cannot capture
by construction. These peaks occur as refractory effects
regularize firing patterns at high rates. The fitted bandpass
filters capture the frequency response of the model neurons
well, except for Izhikevich phasic bursting case, where the
amplitude of the fitted filter is significantly larger than the
power in the first harmonic.

Table 6 Fit parameters for filters Hy(f) shown in the second row of Fig. 6

We found that not all model variants responded
sufficiently to periodic stimulation under all stimulation
conditions to provide sufficient spike data to fit a kernel.
Therefore, we only obtained kernel fits for approximately
three-quarters of all conditions for the Izhikevich class
(3262 out of 4200 possible) and about 90% of all conditions
for the AMAT class (4843 out of 5400).

Model Noise Vi V2 Je,1[Hz] Jfe2[Hz] A[ms]
Izh/Tonic spiking none —0.152 —1.328 9.988 61.577 0.987
balanced —0.150 —1.334 9.959 63.535 1.009
biased —0.110 —1.442 8.397 68.001 1.003
AMAT/Tonic spiking none 0.468 —0.225 224.270 636.620 0.183
balanced 0.386 —0.107 181.140 636.620 0.181
biased 0.088 1.748 28.946 149.427 0.222
Izh/Phasic bursting none —25.548 —1.002 8.745 9.043 1.709
balanced —23.825 —1.002 8.817 9.134 1.670
biased —21.662 —1.003 8.601 8.892 1.936
AMAT/Phasic bursting none —0.718 —1.486 3.067 22.380 0.913
balanced —0.672 —1.488 3.159 21.450 0.832
biased —0.304 —1.884 3.697 21.139 0.836
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Fig.9 Result of k-means
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3.3 Grouping of models

To systematize model responses, we cluster the kernel
fit parameter sets* with k-means clustering using Scikit-
Learn (Pedregosa et al. 2011). We cluster Izhikevich and
AMAT filters independent of each other. To find a suitable
clustering, we ran the clustering algorithm searching for
four, five, six, and seven clusters. For each run, we clustered
starting from 100 initial conditions to avoid local minima.
Since we are clustering fit parameters obtained for a wide
range of simulation conditions, while we are interested in
grouping the 14 and 18 model variants, respectively, we
assign each model variant to a model group as follows: We
count how often each model occurs in each k-means cluster
and assign each model to the cluster to which it is assigned
most often. Each cluster to which at least one model is thus
assigned forms a model group. Low number of clusters led
to model groups containing models with clearly different
spiking behavior, e.g., for the AMAT model, the strongly
bursting case J would be grouped with cases A, H and K,
which show almost no bursts at all, jf Fig. 5 when using
six clusters. We thus used seven clusters in all cases which
yielded six model groups. Figure 9 shows the counts for
each model in each cluster, with a maximum possible count

4Each parameter set consists of f 1, fe.2, ¥1, 2, and A. To compress
widely scattering data, we transformed fc 1, fc 2, and A using a(x) =
log;ox and y; and y» using B(x) = sgnx log;, 100|x| before applying
k-means clustering.

of 300 if fit parameters are available for all combinations of
U, o, w, ag, ay and are assigned to the same cluster.

The resulting grouping into six groups per model class
is shown in Table 7, with median kernel parameter values
for each group in Table 8. Grouping is clearly different for
the Izhikevich and AMAT classes, supporting our previous
observation that these models respond differently to spike
input even though they show identical responses to the
current injection protocol of Fig. 1.

Comparing the grouping of models to the spike responses
shown in Figs. 4 and 5, we can roughly identify the groups
found by k-means clustering of filter parameters to firing
patterns, as indicated in the right column of Table 7. This
classification is far from perfect, as several models show
firing patterns different from the groups into which they
have been placed, especially for the AMAT class. It should
also be noted that the firing patterns are for a single stimulus
configuration only and that models may behave differently
under other conditions; the k-means clustering, on the other
hand, is based on a wide range of stimulus conditions.

3.4 Performance of rate models

We evaluate the perfomance of the linear-nonlinear firing
rate models by testing them against the corresponding
spiking model as described in Section 2.5, using the fit
quality E, as criterium, with E, = 1 indicating a perfect fit.

The third row of Fig. 6 shows the response to a Poisson
spike train with a step in rate from 100s~! to 300s~!. We
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Table 7 Models grouped by k-means clustering of linear filter parameters as illustrated in Fig. 9

Group Firing pattern Izhikevich AMAT
1 Isolated spikes, rare mini bursts A/Tonic spiking B/Phasic spiking
E/Mixed mode I/Latency
F/Adaptation O/Threshold variability
2 Isolated spikes B/Phasic spiking A/Tonic spiking
J/Subthreshold oscillations H/Class 2
K/Resonator
M/Rebound spiking
S/Inhibition-induced spiking
3 Short bursts C/Tonic bursting C/Tonic bursting
D/Phasic bursting
E/Mixed mode
F/Adaptation*
G/Class 1*
4 Long bursts D/Phasic bursting M/Rebound spiking
N/Rebound bursting N/Rebound bursting
S/Inhibition-induced spiking*
T/Inhibition-induced bursting
5 Long bursts Q/Depolarizing after-potential J/Subthreshold oscillations
K/Resonator*
6 Regular isolated spikes H/Class 2 P/Bistability

P/Bistability

Q/Depolarizing after-potential

Group numbers are arbitrary and do not correspond to cluster numbers in Fig. 9. Models with a different firing pattern in Figs. 4 and 5 than their
group are marked with an asterisk. Filter kernel parameters for the groups are shown in Table 8

use the filters fitted for the same noise regime and synaptic
weight and ag = 200s~! and a; = 100s~!, corresponding
to the step height. For the Tonic spiking case, the firing
rate models capture the spiking neuron response very well,

Table 8 Median values of parameters for filter kernels fitted to the six groups described in Table 7 for Izhikevich and AMAT models

with E, > 0.9 in all cases (see legend). For the Phasic
bursting models, we find that the rate models overshoot
massively for the Izhikevich variant with no or balanced
noise, while the rate models “undershoot” somewhat for

Group 71 2! fe1[Hz] fe2[Hz] Alms]

Izhikevich
1 —11.98 —1.41 8.57 61.67 1.35
2 —1231.41 —1.01 17.48 19.51 3.60
3 —154.58 —1.21 10.51 23.28 0.91
4 —2273.17 —1.02 6.70 7.33 6.54
5 54.98 0.19 17.26 403.19 0.74
6 —1462.74 —1.02 36.15 38.72 4.24

AMAT
1 —-90.59 —1.52 16.03 36.65 0.21
2 2.46 0.50 34.47 161.85 0.22
3 —34.88 —1.65 1.53 21.41 0.35
4 —1436.78 —1.00 16.06 18.20 1.90
5 32.98 0.29 8.56 407.10 0.27
6 3.89 0.90 12.77 190.14 0.20
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Fig. 10 Fit quality E, for (1, 0),w E,
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the AMAT variant. The stationary rate attained after the
step is captured well in all cases. These examples also
provide an illustration of how to interpret the fit quality
measure E,.

Figures 10 and 11 show the fit quality observed for
responses to Poisson input with piecewise constant rates as
described in Section 2.5.1. For each model, we simulate
responses under 15 input conditions (three noise regimes

Fig. 11 Fit quality E, for (1, 0),w E,
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(u,0) and five different synaptic weights w), yielding
15 firing-rate estimates rgpike(f). We then test each firing-
rate estimate against the 20 linear-nonlinear rate models
obtained for the same u, o, w and all ag, a; combinations,
yielding 20 fit quality values E|.

For the Izhikevich class, the Inhibition-induced spiking
and bursting models, as well as most models with the lowest
weight, w = 0.1, produce too few spikes to confidently
estimate firing rates from the spiking model. We also
observe very poor responses for the Bistability model. Class
2 excitable stands out with poor scores, E, < 0.5, while the
remaining models provide reasonable fits, £, > 0.7 at least
for most cases with sufficiently strong weights (w > 0.4).

The AMAT model class performs significantly better:
Results are available for almost all stimulus conditions
except for w = 100pA in the absence of noise and all
models except the Depolarizing after-potential model yield
excellent fits (E, > 0.9) for almost all conditions.

Figures 12 and 13 show the fit quality E, for responses to
real spike trains from cat retinal ganglion cells as described
in Section 2.5.2. We again stimulate under 15 different
conditions and obtain the fit quality for each of 20 different
linear-nonlinear model fits.

For Izhikevich-class models we find noticeably worse fit
quality, mostly E, < 0.7, with the worst results mostly
for the same conditions that also yielded low fit quality in

response to Poisson input with piecewise constant rate. The
main differences are that the Depolarizing after-potential
model, which fitted stepped Poissonian input very well does
not perform better than other models for the real spike trains,
and that we obtain quality of fit values, albeit very poor
ones, for the Inihibition-induced bursting model.

AMAT class responses to real spike trains show all over
better fit quality than the Izhikevich class, but also for
the AMAT class fit quality is lower in response to real
spike trains than to stepped Poisson input. The distribution
of good and bad fits is similar to the one observed for
stepped Poisson input, with the worst performance for
the Depolarizing after-potential model. Furthermore, more
models require w > 300 pA to yield a fit quality result for
real spike trains.

We summarize these observations in Fig. 14, which
shows the cumulative distribution P(E,) of all individual
results from Figs. 10-13 (thin lines). This clearly shows
that our linear-nonlinear rate models are much more faithful
for the AMAT class than for the Izhikevich class, and that
within each class, responses to stepped Poisson input are
rendered more faithfully than to real spike trains.

These observations pertain to all (up to 20) linear-
nonlinear models obtained for each input configuration
W, o, w. In practice, we would only be interested in the
optimal linear-nonlinear model for each input configuration,
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Fig. 13 Fit quality E, for (1, 0),w E,
AMAT model class responses to ‘l f — 0
the real spike trains from Fig. 3; (-100, 200), 900 | i
all else as in Fig. 10 700|® .‘ 109
. - E
5001 —-— -e . W — —40.8
300 | = |
100, s 0.7
(0, 100), 900 | 41 Ho0.6
700" |
500 o 40.5
i =) |
300 [ i 0.4
L 2 - au R
100 | . i
(0, 0,900 | | Nl &
700 [© .‘ i "
5000 - .‘ |
oo™ W OEEEE - L] | B
100 L L L L L L L L L L L L L L L L L L L 00
909, O. 2. o Qe W\ I SIS J PR TR TR TR TP
) A I I CN2) RTORTADAC N Y0
WO A0 OO IRN e elye (Mol O 73072 @ O SN
<R W P 1M oo e B
XK AP XO Q\éo T GOSN .\(\6
< RPN AN
6‘@ Qo\’o O™
of \

ie., for given wu,o,w we would choose the model
with

Eﬁ’pt =max E, , (34)
ap.di
the highest E, across all ag,a; combinations. The

cumulative distribution of fit quality for these optimal
models is shown as thick lines in Fig. 14 and provides

P(Er)

Fig. 14 Cumulative distribution P(E,) of the fit quality in response
to stepped Poisson (blue) and real spike train (red) input for the
Izhikevich (dashed) and AMAT classes (solid). Thin lines show the
distribution of all individual results from Figs. 10-13, while thick
lines show the distribution of optimal scores E™ for each input
configuration u, o, w. If all fits were perfect, P(E,) would hug the x
axis until jumping to 1 for E, =1

noticeably better fit quality for stepped Poisson and real
train responses for both model classes. Table 9 shows the
proportion of cases for which we reach high fit quality
(Efpt > 0.8) for the optimal models. We find that the
linear-nonlinear rate models perform well for the majority
of conditions for the AMAT model class, but mostly poorly
for the Izhikevich model class.

3.5 Model generalizations

As we have shown above, for the AMAT model class our
linear-nonlinear rate models can capture the responses of
spiking neuron models to real spike trains quite accurately.
For the Izhikevich class, on the other hand, fits were poorer.
Unfortunately, to find the optimal linear-nonlinear model
for each input configuration u, o, w, we had to test a set
of 20 different linear-nonlinear models to then pick the
best one. This is impractical. We will now consider how to
generalize our linear-nonlinear rate models, so that we can
select an optimal model a priori.
We consider four different types of generalization:

Table 9 Proportion of linear-nonlinear rate models achieving E,” b >
0.8 across all model variants, noise regimes and synaptic weights

Izhikevich AMAT
Stepped Poisson trains 60% 84%
Real spike trains 28% 59%

@ Springer



J Comput Neurosci

Izhikevich/Tonic spiking AMAT/Tonic spiking Izhikevich/Phasic bursting AMAT/Phasic bursting
250 T T T T T T
/.
200 |- - S 4 74
- 7.
! 7 ¢ /7
” f
= 150 | . B Jd F 7 .
& 7o
Q .
© 7
= 100 | E B ]
]
f=3
3
(@)
50 |- B - .
0 % ] |
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Input rate ag [s '] Input rate ag [s 1] Input rate ao [s ] Input rate ag [s ']
100 SERERRARLL SRR 3
—
3
~
< 107t |
[0
©
2
g_ ' ;i‘;.
© A}
© -2 ty
& 10 s
00 . 10t 102 103100 10! 102 103100 10! 102 103100 10t 102 103
Stimulus frequencey fstim [Hz] Stimulus frequencey fstim [Hz| Stimulus frequencey fstim [Hz] Stimulus frequencey fstim [Hz]
250 | | ! —1 B =o0.92 | ! —1 B =1.00] - | ! — 1 B =o.24] - | I — 1 = = 0.8
—_— - E, =0.47 —_— - E, =091 — - E, =0.33 — - E, =0.76
| —_— E, =0.91 | —_— E, =0.99 | —_— E, =0.21 | —_—— B, = 0.87
— - E,=0.55 — - B, =0.96 — - B, =0.35 — - E,.=0.80
—. 200 | — E, = 0.94 | — E, = 0.99] — | — E, = 0.567 = | —_— E,
"“ — - E, =0.49 — - E, =0.86 — = E, =0.66 _— - E,
o, | | |
°© 150 |- ]
N | |
2
g | |
5 100 | B
2 |
3
O |
50 |- -
0 Q ] ! = |
600 800 1000 800 1000 600 800 1000 1200
Time [ms™*] Time [ms™*] Time [ms™ ]
200 ! | PR - ! Tk =008 = f ' E =050
—_ = E,.=0.72 — = B, =0.90 —_ - B, =0.78
— E, = 0.71 — E, = 0.96 — E, = 0.47
—_— = E.=0.72 — = E, =0.85 — = E, =0.75
— — B, = 0.82 — E, = 0.84 — E, = 0.61
T 150 | —_— - B, = 0.74 - — - B, = 0.66 - — - E, = 0.65
ey
o
~
Q
g 100 | 4 | -
=]
j=3
3
O 50| 4 | -
3000 3100 3200 3300 3000 3100 3200 3300 3000 3100 3200 3300 3000 3100 3200 3300 3400
Time [ms™!] Time [ms™!] Time [ms™}] Time [ms™!]

Fig. 15 Response properties for exemplary model neurons includ-
ing responses of model generalizations. This figure is identical to
Fig. 6, except that it also shows the response of model generaliza-
tions. Top row: activation function for no noise (blue), balanced noise
(green) and biased noise (red). Solid lines show original spline fit (also
used for MNW and MNWS generalizations), dashed lines responses
from MN-generalization and the black dash-dotted line the response
for the M-generalization. Second row: Frequency response to sinu-
soidally modulated Poisson input. Thick solid lines: first harmonic
r1, thin solid lines: second harmonic rp, dotted lines: significance
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level reit, light thick lines: fitted filter function H, dashed lines: fil-
ter function for MN-generalizations, dash-dotted lines: filter function
for M-generalization. Third row: Response of spiking model (thin
solid lines) and rate-model prediction (light thick lines) to Poisson
spike trains with rate step. Dashed lines show the response of the
MN-generalization, the black dash-dotted line of the M-generalization.
Bottom row: Response to real spike trains, 400 ms section starting at
3000 ms with the same line types as for step responses. Connection
weight w from left to right: 0.75, 700, 0.75, 500
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per model (M) one linear-nonlinear model for each of the
14 Izhikevich class and 18 AMAT class models;

per model and noise (MN) one linear-nonlinear model for
each Izhikevich/AMAT model and each noise regime;

per model, noise, and weight (MNW) one linear-nonlinear
model for each Izhikevich/AMAT model, each noise
regime, and each synaptic weight selected a priori;

MNW selected by stepped response (MNWS)  one linear-
non-linear model for each Izhikevich/AMAT model, each
noise regime, and each synaptic weight selected based on
the stepped Poisson test.

For the M and MN generalizations, we exploit that the
activation functions g(a) for many models and conditions
scale roughly linear in the synaptic weight. We thus pool the
scaled activation function data g(a)/w for a given model
across all input conditions (M) or just all synaptic weights
for given noise (MN) and fit a single spline g(a) to the
pooled data. We then use wg(a) as activation function in the
linear-nonlinear model. For MNW and MNWS we use the
original splines fitted directly against measurements.
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To generalize the linear kernels, we take the median value
for each of the kernel fit parameters f. 1, fc2, 1, V2, d
and use these median parameters as parameters of our
generalized kernel; using the median instead of the mean
avoids problems with outliers. For M generalization, we
take the median across all u, o, w, ag, a; combinations, for
MN across all w, agp, a; for given p, o and for MNW across
all ag, a; for given w, o, w.

For MNWS generalization, we proceed differently: For
each combination of &, o, w we select the filter parameters
fe, fe2s 1, v2, A which yielded the highest fit quality
E, = E®in response to the stepped Poisson input, our test
stimulus.

While these generalizations, especially of the M and MN
type, may seem rather crude, they perform reasonably, as
indicated by the examples shown in Fig. 15. In one case
shown there, the Phasic Bursting variant of the Izhikevich
model, the model generalizations actually perform better
than the specific model fits: The model responses to a
firing rate step and to real spikes trains show significant
overshoots in low noise regimes (blue and green curves) for
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Fig. 16 Fit quality relative to optimum, py for Izhikevich class model generalizations: a M, b MN, ¢ MNW, and d MNWS. For details, see text
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the input parameters chosen for illustration (w = 0.75, ap =
200s~!, ¢; = 100s™1). This is consistent with the overly
large amplitudes of the fitted filters. The corresponding
generalized model filters fit the experimental data better,
avoid the overshoot and thus track the response of the
spiking model better.

To systematically quantify the quality of our generaliza-
tions, we compute the fit quality in response to stepped
Poisson and real spike train input for all input configurations
u, o, w for each generalization variant. Then

x = EX / E™ (35)

measures how close the model generalization X is to the
optimal linear-nonlinear model, where px = 1 is best.
Results are shown in Figs. 16 and 17. The coarser the gen-
eralization, the more frequently do we observe low gener-
alization quality px. Interestingly, differences between the
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various generalizations are larger for the AMAT class than
for the Izhikevich class, and generalization seems to fail
for the AMAT class mostly for biased noise and Inhibition-
induced spiking. For the Izhikevich class, on the other hand,
generalization mostly fails for low synaptic weights.

The most important observation, though, is that MNWS
generaliztion works well, with ppynws > 0.9 in almost all
cases for both model classes. This means that by selecting a
filter model based on a fixed stepped Poisson protocol, we
will obtain a linear-nonlinear rate model that is close to the
optimal model for given noise regime and synaptic weight
when applied to real neuronal dynamics.

Combined with the observation from Table 9 that the
optimal model will provide a good approximation to actual
neuronal firing rates in roughly two thirds of all conditions,
we can thus use our fitting approach together with the
stepped Poisson test to select a reasonably reliable linear-
nonlinear neuron model.
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Fig. 17 Fit quality relative to optimum, px for AMAT class model generalizations: a M, b MN, ¢ MNW, and d MNWS. For details, see text
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4 Discussion

In this paper we numerically investigated the response
properties of two neuron model classes, the Izhikevich
model and the AMAT model, to noisy spiking input. Both
neuron models can reproduce a wide range of experimen-
tally observed spike response patterns when stimulated with
current injections. However, how these neurons behave with
more natural synaptic inputs has so far not been studied
systematically. We considered three different background
noise regimes, one with no background noise at all, one
balanced and one biased with enough background noise to
put neurons in a spontaneously active state at low output
rates. The first scenario can be considered to represent the
situation in slice preparations, the other two correspond to
neurons embedded in a network with ongoing excitatory
and inhibitory activity. The stimulus spikes were modeled
as stationary and sinusoidally modulated excitatory Poisson
input spike trains, mimicking afferent inputs from sensory
pathways with different synaptic connection strengths w.

4.1 Responses to spike input

We found that the response complexity observed under
current injection collapses to only a few response types
when the neurons are driven by stationary or sinusiodally
modulated Poisson input. This is not entirely surprising,
since some of the models are parametrically quite similar,
and variations in response behavior to current stimulation
depend on very specific current injection patterns that
are not realizable in terms of Poisson spike inputs. Still,
actual neurons receive inputs that often are well-described
by Poissonian statistics and this can thus be considered
the functionally more relevant input scenario. It is hence
of interest to see which, possibly quite different, neuron
models behave approximately equivalent.

The respective groupings for Izhikevich and AMAT are
all-in-all very different. In particular, direct comparison
of the individual corresponding neuron models reveals
completely different response properties for most neuron
models. This is in part explained by the differences in
subthreshold dynamics which are linear for the AMAT
model but nonlinear for the Izhikevich model. Individual
spikes thus have quite different effects in the two models:
Any input spike to an AMAT neuron will always evoke
the same postsynaptic membrane-potential response and
these responses simply superimpose due to the subthreshold
linearity. For the Izhikevich models, on the other hand, the
postsynaptic response depends intricately on the value of the
dynamic variables, such as the membrane potential, and the
effect of several incoming excitatory spikes of same weight
at one moment might be smaller than that of just one such
spike at another moment. These differences hence make it

hard, or even impossible, to set up synaptic weights w for
the two neuron model classes that are directly comparable.

We therefore chose to gauge synaptic strengths in terms
of the minimal weight wy needed to evoke a spike from rest,
cf. Section 2.2, and to use weights spanning roughly from
10% to 75% of wy. This allowed us to quantify and compare
input coupling strength within and between model classes.
In general we observed that output rates for Izhikevich
neurons were much lower than for AMAT neurons for the
same input frequency and relative synaptic strength. It is
therefore possible that model classes might become more
similar if the Izhikevich neurons were driven at higher input
rates or at other background noise levels, although we did
not observe such a trend.

We observed here that neuron models can show very
similar responses to spike input, even though they show very
different responses to current injections, and in particular
that models of different mathematical nature, showing
identical current responses can respond very differently to
spiking input. Given that neurons are mainly driven by spike
input in vivo, this raises the intriguing question of how
valuable a classification of neuronal response types based
purely on current injection experiments is. While in vitro
characterization using carefully crafted current injections is
an important tool to classify neuronal cell types, it appears
that a systematic classification based on a neuron’s response
to spiking input may be required to select suitable neuron
models for spiking and rate-based network models.

4.2 Firing-rate models

In the second part of the paper, we made use of the measured
stationary and frequency responses to fit linear-nonlinear
firing-rate models to the data. It has previously been shown
that the firing-rate dynamics in response to complex spiking
input can be well described by such models (Paninski et al.
2004; Ostojic and Brunel 2011; Weber and Pillow 2017,
Dstergaard et al. 2018). In particular, Nordlie et al. (2010)
studied simple leaky integrate-and-fire (LIF) models with
strong current-based synapses. They showed that a lowpass
fit to the frequency response together with the nonlinear
activation function yielded linear-nonlinear rate models that
predicted responses to arbitrary inputs with high accuracy.
Heiberg et al. (2013) adapted this approach and studied
two LIF-like models, one with current-based, the other with
conductance-based synapses, that were fit to actual data
recorded from cat and macaque LGN in response to retinal
stimulation. They found the performance of linear-nonlinear
rate models to be good as well.

Here, we presented results of the same basic approach for
the Izhikevich and AMAT neuron model classes. Frequency
responses were in most cases more complex than simple
lowpass behavior and we employed fits to bandpass filters
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that better capture the non-monotonous passband structure
observed in simulations. We then used novel test stimuli,
i.e., step responses and more structured, highly variable
spike input sampled from actual recordings of retinal
ganglion cells (Casti et al. 2008) to study rate-model
performance. The main finding is that the AMAT neuron
model class is approximated much better than the Izhikevich
class by our linear-nonlinear rate models: for the former,
good rate model responses (E, > 0.8) were obtained in
64% of all cases tested, while the latter provided such good
results in only 15% of cases tested. This difference might
again be explained by the fact that the AMAT model class
has subthreshold linear dynamics. However, the AMAT
class is not completely linear either, because its firing
threshold depends on the history of the membrane-potential
dynamics. Therefore, neuronal transfer is not expected to be
linear in any model class.

Some of the model variants gave consistently poor results,
typically those that show very nonlinear behavior in response
to direct current stimulation, e.g., the Bistability, Inhibition-
induced spiking and Inhibition-induced bursting models for
the Izhikevich class, and the Depolarizing afterpotential and
Inhibition induced spiking models for the AMAT class.

To estimate the effects of linearity on rate-model perfor-
mance, we measured the linearity of the stationary response
function ro(ap) in terms of Ly, cf. Eq. (12). If the stationary
response function is linear, the activation function g(-) is
also linear and only its slope is relevant, independent of
the working point, cf. Section 2.4. We computed L for all
background noise regimes as a function of synaptic strength
w and working point ag, and find that the AMAT model
generally is more linear than the Izhikevich model with
respect to L1. We further find that the linearity measure L
does not predict rate-model performance (data not shown).
Thus, a nonlinear activation function does not imply poor
rate-model performance, nor does linearity in terms of L
necessarily predict a good rate-model performance.

Furthermore, despite exploration of many potential per-
formance predictors, we were unable to identify any sin-
gle quantity or group of quantities that reliably predicted
whether the response of a neuron model in a given input
regime could be captured well by a linear-nonlinear rate
model. We found, though, that a relative simple protocol,
testing the rate model’s performance in response to a Pois-
son spike train input with piecewise constant rate (stepped
Poisson), allowed us to reliably identify rate models that
render spiking neuron model responses to realistic spike
input with reasonable accuracy.

4.3 Application to network modeling

We have shown that the firing-rate responses of the widely-
used Izhikevich model (Izhikevich 2003b) and in particular

@ Springer

of the award-winning augmented multi-timescale adaptive
threshold (AMAT) model (Yamauchi et al. 2011; Jolivet
et al. 2008) can be captured by linear-nonlinear firing-
rate models with bandpass filters fitted to spiking neuron
responses through a systematic, automated process. We
have further shown that these models can be generalized
across a wide range of input conditions without excessive
loss of fidelity, and that optimal parameter sets can be
chosen using simple test stimuli. Furthermore, since we use
a bandpass filter in sum form, it can be represented by a
system of two first-order differential equations, which is
straightforward to integrate into standard formalisms for
rate-based network models (see, e.g., Nordbg et al. 2007).

This suggests the following approach to improve rate-
based neuronal network models based on our findings.
Assuming a model with two neuronal populations, start by
selecting for each population the AMAT (or Izhikevich)
model variant that best matches the response of individual
neurons of each population to spiking input. Then apply
the fitting procedure described in this paper (Section 2.4)
to obtain the parameters of the nonlinear activation function
and the linear bandpass filter using test stimuli covering the
expected dynamic range of your network model. From the
large set of fits obtained, either select individual fits based
on a simple test protocol (Section 3.4) or generalized at a
suitable level (Section 3.5), and apply the model parameters
thus obtained to the differential-equation representation of
the bandpass filter (Section 2.4.1).

The approach presented here may thus contribute to
bringing rate-based network modeling closer to the reality
of biological neuronal networks. While a systematic
delineation of the range of validity of the linear-nonlinear
models described here for network modeling is beyond
the scope of this paper, we consider the generalization
results in Figs. 16 and 17 an indicator: Linear-nonlinear
models will not be useful in cases where responses are
insufficient (gray areas in Figs. 10-13 and 16-17); we
also observed poorer performance for spiking patterns
that deviate strongly from tonic behavior (e.g., phasic
bursting, bistability, depolarizing afterpotential). But good
generalization scores, in particular where coinciding with
good scores for individual conditions (Figs. 10—-13) suggest
that in these cases our linear-nonlinear model provides
a faithful representation for the rate dynamics of the
underlying spike responses, and hence a strong potential for
good performance also on the network level.
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Appendix

The AMAT model as specified by Equations 1-3, 16, 17,
and A1-A7 of Yamauchi et al. (2011) models input as
instantaneous jumps in the membrane potential (§-synapses)
or as a-function post-synaptic currents (PSCs). We adapt the
model to synapses injecting exponentially decaying PSCs
and add a piecewise-constant input current. We further re-
parameterize the model from membrane resistance R and
time constant 7, to membrance capacitance C and time
constant t,, by setting R = t,,/C; this brings the model
equations in line with conventions for the NEST Simulator
(Gewaltig and Diesmann 2007; Morrison et al. 2007). The
resulting set of differential equations are then integrated
using the exact integration technique (Rotter and Diesmann
1999; Plesser and Diesmann 2009).

The AMAT model with two adaptive thresholds (AMAT?2
model), two exponential-current synapses and piecewise-
constant input current is defined by the following equations

. vV oI
V=-—t= 36
- + C (36)
. 9 .
b1 = —— +a1y 8t — i) (37)
T P
. 6h N
by=—-=+m) 8t—i) (38)
(%) X
.20 0 . 1% I
9V+—V+—Z=ﬂv:—ﬂ—+ﬂ—. (39)
Ty 157 Tm C

Here, #;, are the times of the spikes fired by the neuron itself.
A spike is fired whenever

V() 20@) =w+61+ 6+ 06y (40)

provided the neuron is not refractory. To be precise, let #; be
the time of the most recent spike and tf the duration of the
absolute refractory period. Then the time of the next spike
is given by

frp1 = min{t > B + Tef| V() > 0(2)} . (41

Note that the membrane potential is not reset upon a spike.

To obtain first-order differential equations for 8y (Rotter
and Diesmann 1999), we define

. Oy
n=~0v+— (42)

Ty

and arrive at the equations

= -2 43
—+G 3)

. 0

by = n— % (44)

as can be verified by inserting the first differential equation
into the time derivative of the second and comparing with
Eq. (39).

We treat spike input as follows: We assume that the PSC
evoked by input through any synapse on the neuron will
decay either with time constant ¢ or ;. Let {(fx,j, wx, )}
be the set of all spike arrival times and weights of spikes
arriving through synapses with time constant tx where X €
{E, I}. If we further assume that all PSCs are independent
of each other, we can express the total input as

I(t) = 1g@t) + 11 (1) + Lext () 45)
where

t—fX_j R
Ix(t) =Y wxje =x O(—ix; (46)

J

and Iex(¢) is a piecewise-constant external current and ®(z)
the Heaviside step function. We will commonly refer to
Ig as excitatory and I; as inhibitory input. For efficient
integration of the synaptic currents (Plesser and Diesmann
2009), we describe them by differential equations

Ix +txIx =) wx 8t —ix) . 47
J

We can summarize the resulting system of eight first-
order linear differential equations as

§ = Ay + (48)

with state and input vectors

Iext AIext(l‘)
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and system matrix

00 0 0 0 0 0 0
0—#000000
00—%00000
o L L L o 0o o0 o0
_ c C 1
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00000—3—200
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Alx(¢) represents the jumps in the piecewise constant
external input current.

We can solve this system exactly (to the limits of
machine precision) on a fixed time grid t; = jh for
h > 0 using exact integration (Rotter and Diesmann 1999),
provided that Iex(#) only changes at grid points ¢}, i.e.,
Al () = Zj 81;8(t — t;). Starting from the initial
state yo = y(t =0), exact integration updates the state
according to

Yi+1 = AYj + Xjt1 (51)

where A is the propagator matrix

P=cA = Z @Aan’ (52)

1
[

The §(t; — fx)-functions in the input vector x (¢) are replaced
by Kronecker symbol §; upon discretization, restricting
spike times to the time grid; see Morrison et al. (2007) for
an extension to off-grid spikes.

The propagator matrix P can be obtained numerically,
e.g., using the expm functions provided by SciPy or Matlab,
using an algorithm due to Higham (2005). These methods
can, though, fail under certain circumstances (Moler 2012;
Al-Mohy and Higham 2009) and we have not performed
any systematic tests regarding their reliability with respect
to model neuron dynamics. We used the Mathematica
symbolic algebra system (Wolfram 1999) to obtain an
explicit expression for the propagator matrix P and generate
C++-code for the matrix elements. Note that the expression
obtained in this way requires that all time constants except
71 and 1o differ, ie., 1, # v # tg # 717. Other
expressions for P pertain if any two time constants are
equal. The resulting model is implemented in NEST as
amat2_psc_exp.

While our implementation of the AMAT2 model is based
on the equations given by Yamauchi et al. (2011), we
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found that we needed to modify some model parameters to
reproduce the responses in Figs. 6 and 7 of that paper:

— all models: membrane time constant 7,, = 10 ms
instead of 7, = 5 ms

—  subthreshold oscillations: ¢y = 1, = 0.2 instead of
a; =10,8=0.1

— resonator: B = 0.5 instead of 8 = 0.1

—  threshold variability: B = —0.5 instead of § = —0.1

Parameters used in our model are given in Table 4.

We further needed to make some adjustments to stimulus
parameters to reproduce Figs. 6 and 7 in Yamauchi et al.
(2011):

—  tonic spiking: I, = 0.118 nA instead of I, = 0.15 nA

—  phasic spiking: 1. = 0.1 nA instead of I, = 0.08 nA

—  phasic bursting: 1. = 0.1 nA instead of I. = 0.08 nA

— class 1 excitable: dI/dt = 150 pA/s instead of
dl/dt =2.5pAls

— class 2 excitable: dl/dt =
dl/dt = 2.5 pAls

— latency: I, = 1 nA instead of /. = 0.58 nA

—  subthreshold oscillations: I, = 0.8 nA instead of I, =
0.2nA

— resonator: I, = 0.6 nA instead of I, = 0.36 nA

— integrator: I, = 0.45 nA instead of 7, = 0.28 nA

150 pA/s instead of

— rebound spiking: I, = —1.5 nA instead of I, =
—0.6 nA
— rebound bursting: I, = —1.5 nA instead of I, =

—0.6 nA

—  threshold variability: I, = £0.35 nA instead of I, =
+0.2 nA

—  bistability: I ST = 222 ms instead of /S = 22 ms

— depolarizing after-potential: 1, = 0.5 nA instead of
I, =02nA

— accomodation: d1/dt = 0.54nA/s,2.43 nA/s, Apamp =
180 ms, 40 ms instead of dI/dt = 1 nA/s, 4.5 nA/s,
Aramp = 90 ms, 20 ms

— inhibition-induced spiking: I, = —0.4 nA instead of
I, = —-0.3nA

— inhibition-induced bursting: I, = —0.3 nA instead of
I, = —0.16 nA

The changes in stimulation currents are only relevant for the
illustrative Fig. 1 and do not directly affect the remainder of
the results presented here.

We can only speculate about why these parameters
changes were necessary. We inferred the time axis of
Figs. 6 and 7 of Yamauchi et al. (2011) from the scale
bars given in panel A of each figure. This clearly indicates
that pulse/ramp durations given in Table 1 of that paper are
inconsistent with the figures for, e.g., bistability (Fig. 6F)
and accomodation (Fig. 7I). Concerning the membrane
time constant t,,, the authors tested various values of this
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parameter (Yamauchi et al. 2011, p. 2, right column) and
this may have led to a mix-up.
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