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Abstract Understanding the feedback mechanisms between soil water content (SWC) and biomass
production is important for sustainable resources management. Here we present a new method enabling
simultaneous noninvasive measurements of SWC and biomass dynamics based on cosmic ray neutron
sensing (CRNS). Recently, it was suggested that the neutron ratio (Nr) between thermal neutron (TN) and fast
neutron (FN) intensity contains information on other hydrogen pools like vegetation, canopy interception,
and snow. The aim of this study is to evaluate the accuracy of simultaneous measurements of SWC and
biomass dynamics during agricultural drought conditions using CRNS probes. To this end, we instrumented
an arable field cropped with sugar beet with CRNS probes and a wireless in situ SWC sensor network.
Belowground and aboveground biomass were sampled in monthly intervals. We found a linear relationship
between Nr and the aboveground biomass that allowed to continuously quantify the dry aboveground
biomass development throughout the growing seasonwith a root-mean-square error from 0.14 to 0.22 kg/m2.
This information was used together with measured belowground biomass to correct for the effect of
biomass on SWC determination with CRNS probes, which increased the accuracy of the SWC estimates
considerably as indicated by the decrease of the root-mean-square error from 0.046 to 0.013 cm3/cm3. We
anticipate that future research on the Nr can further improve the accuracy of SWC and biomass estimates and
extend the application of CRNS to include canopy interception, ponding water, and snow water equivalent
estimation for both stationary and roving CRNS systems.

1. Introduction

Soil water content (SWC) is one of the key state variables in the soil-vegetation-atmosphere continuum due
to its important role in the exchange of water and energy at the soil surface (Vereecken et al., 2015). A dec-
ade ago, cosmic ray neutron sensing (CRNS) was proposed as an attractive noninvasive and field-scale
method for SWC estimation (Zreda et al., 2008) in a footprint of up to 15 ha with a maximum penetration
depth of about 80 cm (Köhli et al., 2015). Since then, more than 200 stationary CRNS stations have been
installed worldwide (Andreasen, Jensen, Desilets, Franz, et al., 2017). A range of studies have successfully
compared SWC estimates obtained with CRNS to in situ measurements (Baatz et al., 2014, 2015; Bogena
et al., 2013, 2015; Franz, Zreda, Ferré, et al., 2012; Rivera Villarreyes et al., 2011; Schrön et al., 2017) and
satellite and modeling products (Baatz et al., 2017; Kędzior & Zawadzki, 2016; Montzka et al., 2017;
Vinodkumar et al., 2017). Clearly, CRNS has matured into an established noninvasive method for SWC deter-
mination that allows to bridge the gap between spaceborne and in situ (point-scale) SWC measurements
(Bogena et al., 2015).

CRNS measurements are not only sensitive to SWC but are also influenced by hydrogen stored in other
pools (Desilets et al., 2010), such as biomass, litter, snow, and canopy interception (Andreasen, Jensen,
Desilets, Zreda, et al., 2017; Bogena et al., 2013; Schattan et al., 2017). To improve the accuracy of
SWC estimates, these pools need to be considered. Static hydrogen pools such as soil organic carbon
(Franz, Zreda, Rosolem, & Ferré, 2013) and lattice water (Franz, Zreda, Rosolem, & Ferré, 2012) can be
accounted for with relatively small effort during the calibration of the CRNS probe. Time-varying hydro-
gen pools such as atmospheric water vapor content (Rosolem et al., 2013), vegetation biomass (Baroni &
Oswald, 2015; Rivera Villarreyes et al., 2011), or the water content of a litter layer (Bogena et al., 2013)
can be considered using independent estimates of these confounding variables. Whereas the influence
of atmospheric water vapor content on the CRNS measurements can be accurately removed using mea-
surements of air humidity (Rosolem et al., 2013), corrections for dynamic changes in biomass (e.g.,
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growing crops) are much less straightforward because accurate field-scale estimates of biomass are labor-
ious to obtain.

Recently, Tian et al. (2016) proposed to use the ratio of thermal to fast neutron intensity measured with
the CRNS probe to estimate aboveground biomass for maize and soybean crops. Obviously, it would be
highly attractive to estimate biomass directly using CRNS for at least two reasons. First, it would allow to
remove effects of time-varying biomass from SWC estimates obtained with CRNS without the need for
additional measurements. Several studies have already reported that biomass and the N0 parameter
(the fast neutron count rate over dry soil conditions) of the standard calibration model for CRNS probes
are linearly or nonlinearly related (Baatz et al., 2014, 2015; Franz, Zreda, Rosolem, Hornbuckle, et al., 2013;
Hawdon et al., 2014; Hornbuckle et al., 2012). In all these studies, the use of the proposed correction
methods resulted in a considerable improvement in the accuracy of SWC estimates for sites with constant
biomass (e.g., forests) or sites with near-constant biomass (e.g., deciduous forests; Heidbüchel et al., 2016).
However, strong deviations were still found for cropped sites with dynamic changes in aboveground and
belowground biomass. Clearly, a general method for the correction of biomass effects on CRNS measure-
ments of SWC covering various vegetation types is still not available.

Second, simultaneous measurements of SWC and biomass dynamics at the field scale would be very
useful to improve the understanding of relationships between plant growth and SWC deficit, which
is essential for the development of adaptation strategies against drought-induced restrictions in crop
production. According to Dai (2011), the risk for droughts has increased substantially since the 1970s
due to global climate change (e.g., increased atmospheric moisture demand and altered atmospheric
circulation patterns). The drought frequency has also increased in temperate climates since the 1980s
(Briffa et al., 2009). Although this typically has not yet affected food security as in Sub-Saharan Africa
(Webber et al., 2014), the economic losses due to drought have also been considerable in temperate
climate regions. For example, the average cost of a drought event in Europe was estimated to be
621 million euros between 1950 and 2014 (Zink et al., 2016). Thus, securing and improving productivity
of crops in water-limited conditions has become more important in recent years (Passioura &
Angus, 2010).

The overall aim of this study is to evaluate the accuracy of simultaneous measurements of SWC and bio-
mass dynamics using CRNS probes and to show the potential of CRNS measurements for identifying and
studying effects of agricultural droughts on both soil water storage and plant growth. For this, we first eval-
uate available approaches to correct SWC estimates obtained from CRNS for biomass for the case of a
highly dynamic crop with high belowground biomass. In a next step, we test the potential of simultaneous
measurements of SWC and biomass dynamics using information of calibrated CRNS data only. For this
study, we rely on data from an extensive field experiment where cosmic ray neutrons, biomass, and
SWC were monitored in an agricultural field site cropped with sugar beet (Beta vulgaris L.) for an entire
growing season.

2. Materials and Methods
2.1. The Selhausen Experimental Site

The Selhausen experimental site is part of the TERENO (TERrestrial ENvironmental Observatories) network
(Bogena et al., 2012; Zacharias et al., 2011) and is located in Western Germany, 40 km west of Cologne
(50°52000″N 6°27022″E). In this study, we focus on the F01 field at the Selhausen site that covers an area
of 2.77 ha (Bogena et al., 2018). The site is located in the temperate maritime climate zone with a mean
annual temperature and precipitation of 10.2 °C and 714 mm, respectively (Korres et al., 2015). The soil
was classified as a Cambisol with a silty loam soil texture. The investigated field is located on the upper
terrace of the Rhine/Meuse river system and is characterized by Pleistocene sand and gravel sediments
(Weihermüller et al., 2007) with irregularly alternating subsurface channels that are filled with fine
sediments. The within-field variability of soil properties was determined by Rudolph et al. (2015) using
z-transformed electrical conductivity (σz) measurements (Figure 1). Lower values indicate a higher content
of sand and gravel and thus a lower water-holding capacity, whereas higher σz values indicate finer mate-
rial with higher water holding capacity. This heterogeneous sediment distribution leads to spatially variable
plant development and leaf area index patterns (Rudolph et al., 2015).
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2.2. Auxiliary Data

Air temperature, wind speed, absolute humidity, net radiation, and atmospheric pressure were measured
during the experiment. The potential grass reference evapotranspiration (ETpot) was calculated from the
meteorological data using the Penman-Monteith equation according to Allen et al. (1998). Actual evapotran-
spiration (ETact) was measured with an eddy covariance flux tower at approximately 5 m distance from the
CRNS station following methods described in Gebler et al. (2015). Finally, we used precipitation data from
a TERENO meteorological station approximately 500 m northwest of the Selhausen test site
(SE_EC_003, http://teodoor.icg.kfa-juelich.de/ibg3searchportal2/index.jsp).

Several drought indices have been developed to assess and respond to drought based on various hydrolo-
gical and meteorological parameters, including precipitation, evapotranspiration, and SWC (Narasimhan &
Srinivasan, 2005). Here we use the evaporative index (potential evapotranspiration divided by precipitation),
the water balance, and data from the German drought monitor (Zink et al., 2016) to characterize the drought
situation during the investigation period. The German drought monitor is based on a soil moisture index that
considers the modeled average profile SWC of the past 30 days and the average modeled profile SWC for the
selected time period for the past 60 years (Zink et al., 2016).

2.3. In Situ SWC Measurements

In situ SWC was measured at each of the sampling sites (1–26, Figure 1) in three depths with the SoilNet
wireless sensor network (Bogena et al., 2010) equipped with 156 SMT100 SWC sensors (Truebner GmbH,
Neustadt, Germany). Two SMT100 sensors were installed per sampling depth to increase the measure-
ment volume and to enable the identification of sensor malfunctioning. The SMT100 sensors were

Figure 1. Map of the Selhausen experimental field showing z-transformed electromagnetic conductivity (σz) distribution and the locations of sampling and instru-
ments. The σz measurements indicate gravel- and sand-dominated soils (reddish colors) with lower field capacity and fine material fillings (greenish colors) with
higher field capacity (Rudolph et al., 2015). In the upper right corner, the google maps satellite image from the beginning of the dry period (9 August 2016) is shown.
The pattern of healthier (dark green) and less healthy (light green) crops mirrors the distribution of σz values. CRNS = cosmic ray neutron sensing; SWC = soil water
content.
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individually calibrated using five dielectric reference media (Bogena
et al., 2017), and the measured permittivity was related to SWC using
the Topp equation (Topp et al., 1980). We considered the soil heteroge-
neity for the selection of locations 1–18 (Figure 1) for soil sampling
(section 2.6) and the in situ SWC measurements. Additional locations were
selected near the CRNS probe to consider the greater sensitivity of the
detector to neutrons originating closer to the sensor (Köhli et al., 2015;
Schrön et al., 2017). Therefore, eight additional locations were positioned
radially around the CRNS probes at a distance of 3 m (locations 19–21)
and 11 m (locations 22–26). The SMT100 sensors at locations 1–18 were
installed in 5-, 20-, and 50-cm depths. At locations 19–26, the sensors
were installed in 5-, 10-, and 20-cm depths. This was done to favor a
higher resolution close to the soil surface and to also account better for
the decreasing sensitivity of the CRNS probes with soil depth (Zreda
et al., 2008).

In order to compare CRNS probe and in situ SWC measurements, it is
necessary to integrate the distributed SoilNet measurements considering
the spatial sensitivity of the CRNS probes. We followed the averaging pro-
cedure developed by Köhli et al. (2015) and Schrön et al. (2017), which pro-
vides an improved estimate of the spatial sensitivity of the CRNS probe as
compared to the simple exponential decay initially suggested by Zreda
et al. (2008). The neutron transport simulation used to derive this revised
spatial sensitivity also showed that the sensitivity with depth decreases
exponentially and not linearly as assumed by Franz, Zreda, Ferré,
Rosolem, et al. (2012). A detailed description of the averaging of the dis-
tributed SWC measurements used for comparison with CRNS measure-
ments is given in Appendix A.

2.4. Determination of Biomass Dynamics

We sampled sugar beet biomass at nine locations (Figure 1, locations
22–26, 2, 16, 101, and 102) on a monthly basis. The selection of loca-
tions 22–26 close to the CRNS probes was based on the assumption

that hydrogen sources at shorter distance have a greater influence on the CRNS signal. Some additional
biomass sampling locations were used to represent both favorable (locations 2 and 101) and less favor-
able growing conditions (locations 16 and 102). We used the arithmetic mean of all biomass sampling
locations as the best representative estimate of the biomass sensed by the CRNS probe. At each bio-
mass sampling location, 1 m of planting row was harvested. This included both aboveground and
belowground biomass down to a depth of ~40 cm, which corresponds to the maximum penetration
depth of the CRNS probe for the lowest SWC measured during the measurement period. Areal average
biomass was calculated from the average distance between rows (46.5 cm). The biomass samples were
bagged and sealed airtight before they were transported to the laboratory. In the laboratory, they were
cleaned from soil residues, divided into aboveground and belowground biomass, and weighed. In order
to determine dry biomass, subsamples of ~20% of the biomass were oven dried to a constant weight at
65 °C. The vegetation water content was estimated from the weight loss after drying. Total biomass
water equivalent (BWE) consists of vegetation water as well as hydrogen present in the biomass tissue.
As suggested by Franz, Zreda, Rosolem, and Ferré (2013) and Franz, Zreda, Rosolem, Hornbuckle, et al.
(2013), we assume that the water equivalent of the aboveground and belowground biomass can be
approximated by the amount of hydrogen and oxygen contained in cellulose (few), that is, ~55.6% by
weight:

BWE ¼ BMf � BMdð Þ þ f ew ·BMd½ �·ρw·pd (1)

where pd is the plant density (plants m�2), BMf and BMd are fresh and dry biomass weights (kilograms),
respectively, and ρw is the density of water (103 kg/m3). This equation was used for the determination of

Figure 2. Setup of the cosmic ray neutron sensing probes at the test site
Selhausen (three CRS-2000/B [1, 2, and 3], one CRS-1000 [4], and one CRS-
cross calibrator [5]).

10.1029/2018WR022692Water Resources Research

JAKOBI ET AL. 4



aboveground BWE (BWEa), belowground BWE (BWEb), and total BWE (BWEtot = BWEa + BWEb). Between sam-
pling dates, estimates of BWE were obtained by linear interpolation.

2.5. Cosmic Ray Neutron Measurements

We used five CRNS probes (one CRS-1000, three CRS-2000/B, and one mobile CRNS probe, Figure 2), each
equipped with two detector tubes. Summing up the measured neutron counts from all systems resulted in
a much higher neutron intensity accuracy compared to a single probe. All probes were manufactured by
Hydroinnova LLC, Albuquerque, NM, United States. The neutron detectors are either filled with 3He gas
(CRS-1000 and mobile CRNS probe) or 10BF3 (CRS 2000/B) enriched gas to obtain high neutron absorption
cross sections. When neutrons enter the detector tube, the gases absorb part of the neutrons, which creates
electrons that are attracted by an anode. This produces electric currents which are amplified, detected, and
counted by a pulse module (Zreda et al., 2012). The neutron absorption of 3He is more efficient, and thus
these detector tubes can be constructed distinctly smaller compared to 10BF3-filled detector tubes. For
this reason, 3He detector tubes are installed inside protective housings (Figure 2, tube 4 and CRS-cross
calibrator — no. 5), whereas the larger 10BF3-filled detector tubes are mounted on poles without a housing
(Figure 2, tubes 1–3).

Cosmic ray neutrons can be differentiated into two energetic levels (Köhli et al., 2015): thermal neutrons
(TN, maximum energy at ~0.025 eV) and fast neutrons (FN, energy range from ~0.2 eV to 100 keV). FN
are continuously losing energy by collisions with atomic nuclei and other neutrons, a process called
moderation, and will eventually be transformed into TN. Because of the lower kinetic energy, the probabil-
ity of absorption reactions is greater for TN. Unshielded detector tubes respond mainly to neutrons in the
thermal energy range. To detect neutrons in the fast energy range, the detector tube is shielded with poly-
ethylene, which has a high hydrogen content that effectively moderates FN to TN before they enter the
detector tube.

It is well established that FN are subject to variations in air pressure (Desilets & Zreda, 2003), incoming cos-
mic ray neutron intensity (Desilets & Zreda, 2001), and atmospheric water vapor (Rosolem et al., 2013). We
applied the established correction methods for all three influences to obtain corrected FN intensity data
(see Appendix B). However, the required corrections for TN intensity are still under debate. For instance,
Tian et al. (2016) used uncorrected TN intensity to estimate the thermal-to-fast neutron ratio, Nr (see
section 2.7), whereas Andreasen, Jensen, Desilets, Zreda, et al. (2017) corrected TN intensity for air pressure
and incoming neutron variations. In order to investigate the most appropriate correction procedure, we
empirically explored various TN correction procedures (Appendix C). We found that the best results were
achieved with TN intensity corrected for pressure and atmospheric water vapor only. This suggests that
TN intensity is less dependent on incoming cosmic radiation than FN intensity. At first sight, this may seem
surprising as TN are typically produced by thermalization of FN. However, absorption (e.g., by Gd, Ti, and B)
and diffusion processes become more important in the TN energy range (Schrön, 2017; Zreda et al., 2008),
which is expected to weaken the relationship between FN and TN. More elaborated studies using neutron
transport modeling are needed to better address the determination of the most appropriate correction
strategy for TN intensity.

2.6. Static Belowground Hydrogen Pools

The CRNS method is affected by all hydrogen pools, which may be divided into desired signals, such as SWC
and vegetation biomass, and distorting influences, such as soil organic matter and lattice water (Zreda et al.,
2012). The distorting belowground hydrogen pools decrease the neutron count and reduce the effective sen-
sing depth of CRNS probes (Bogena et al., 2013; Franz, Zreda, Rosolem, & Ferré, 2012). In this study, soil
organic matter, lattice water (LW), and soil bulk density were determined using soil cores of 30-cm length
and 5-cm diameter taken at locations 1–26 (Figure 1) with a HUMAX soil corer (Martin Burch AG,
Rothenburg, Switzerland). The soil cores were divided into 5-cm-long subsamples, and their bulk density
was derived using the oven drying method (105 °C, 24 hr). Subsequently, these 156 samples were sieved
and merged to six depth-specific bulk samples of which 20-mg subsamples were combusted in oxygen at
1000 °C in order to determine LW using a heat conductivity detector. The total organic carbon (TOC [g/g])
of the bulk subsamples was determined using a VARIO EL Cube (Elementar Analysensysteme GmbH,
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Langenselbold, Germany). The soil organic carbon water content equivalent (SOW [g/g]) was estimated
according to Franz et al. (2015):

SOW ¼ TOC·1:724·f ew (2)

where the constant 1.724 is used to convert total organic carbon mass into soil organic matter mass, and
few is the stoichiometric ratio of water to cellulose (C6H12O5, i.e., ~55.6% of the dry weight). It was found
that the LW content averaged over space and depth was 0.0289 ± 0.006 g/g. SOW averaged over all loca-
tions and depths was 0.01 ± 0.0025 g/g. The minimum bulk density of 1.2 g/cm3 was measured at location
13, the average bulk density was 1.36 g/cm3, and the maximum bulk density of 1.46 g/cm3 was measured
at location 10.

2.7. Thermal-to-Fast Neutron Ratio

Tian et al. (2016) found that the ratio of thermal to fast neutron counts (Nr) was positively correlated with
BWEa for maize and soybean crops and thus could be used to estimate biomass. This finding was recently
confirmed using neutron modeling for agricultural, heathland, and forest sites by Andreasen, Jensen,
Desilets, Zreda, et al. (2017). In this study, we used the following definition of the Nr:

Nr ¼
TN· FNav

TNav

FN
(3)

where FN and TN intensity were integrated using a 3-day moving average and FNav and TNav were the arith-
metic means for the entire measurement period. The 3-day integration time was chosen to reduce the effect
of highly dynamic hydrogen pools (i.e., interception, ponding water, and infiltration fronts succeeding preci-
pitation), which are associated with relatively short time scales (i.e., less than a day). In contrast, biomass
changes occur much slower (i.e., time scale of days to weeks; Baroni & Oswald, 2015). The normalization
was introduced to enable a better comparison with other studies using different numbers of detector tubes.
Following Tian et al. (2016), we related BWEa to Nr using a linear model:

Nr � BWEa ¼ a·Nr þ b (4)

where a and b are calibration parameters and Nr-BWEa represents BWEa calculated from the Nr. Since dry
aboveground biomass (AGBd) instead of BWEa is used in most agricultural management and environmental
modeling applications, we also examined whether this property can be estimated from Nr-BWEa. For this,
equation (1) was reformulated (see Appendix D):

Nr � AGBd ¼ Nr � BWEa
1

AGBr
þ f ew � 1

� � ·
1

pw·pd
(5)

where Nr-AGBd is the dry aboveground biomass calculated from the Nr and the measured ratio (AGBr) of AGBd
to fresh aboveground biomass (AGBf), which was calculated with

AGBr ¼ AGBd
AGBf

(6)

In typical applications, only a single value for AGBr (i.e., the average of AGBr over the growing season) may be
available. Therefore, we also tested whether an adequate estimation of AGBd is possible using a
constant AGBr.

2.8. Relating Fast Neutron Intensity to SWC and Accounting for Biomass

Baatz et al. (2014) compared three parametrization methods to infer SWC from FN intensity and found that all
methods performed reasonably well (root-mean-square error [RMSE] ≤0.033 cm3/cm3). We chose the N0

method (Desilets et al., 2010) as it has been successfully applied in various studies (e.g., Baatz et al., 2014,
2015; Baroni & Oswald, 2015; Bogena et al., 2013; Franz, Zreda, Ferré, et al., 2012; Franz, Zreda, Rosolem, &
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Ferré, 2012; Franz, Zreda, Rosolem, Hornbuckle, et al., 2013; Franz et al., 2015; Rivera Villarreyes et al., 2011;
Tian et al., 2016):

θv tð Þ ¼ pbd a0
FN tð Þ
N0 tð Þ � a1

� ��1

� a2 � LW � SOW

" #
(7)

where θv is the volumetric SWC (cm3/cm3), N0 is the fast neutron count rate over dry soil, t indicates the time
dependency, ρbd is the average dry soil bulk density of all locations (g/cm3), and ai are fitting parameters.
Using MCNPx simulations for generic silica soils, Desilets et al. (2010) derived a0 = 0.0808, a1 = 0.372, and
a2 = 0.115 for values of θ > 0.02 kg/kg. In this study, a 12-hr moving average of FN intensity was used for
SWC estimation.

Local calibration of the CRNS probes was done by fitting N0 in equation (7) to in situ SWC measurements. We
used three calibration methods: Method 1 calibration of N0 at one specific day (e.g., Desilets et al., 2010),
Method 2 calibration of N0 using the continuously measured SWC and FN during the monitoring period
(e.g., Bogena et al., 2013), and Method 3 calibration of N0 at one specific day complemented with correction
procedures to account for the impact of biomass on the measured FN intensity (e.g., Baatz et al., 2015).
Methods 1 and 2 are used to illustrate the need for biomass correction of CRNS data. The correction functions
required for the third approach were obtained by relating time-variable N0 estimates derived from FN inten-
sity and reference SWC with a range of quantities that represent the vegetation influence on FN. In particular,
the following linear regression functions were considered:

N0;BWEa tð Þ ¼ cBWEa·BWEa tð Þ þ N0;BWEa¼0 (8)

where cBWEa in counts per hour (cph) per millimeter of BWEa represents the change in N0 with BWEa and N0,

BWEa = 0 is the intercept of the regression

N0;BWEtot tð Þ ¼ cBWEtot·BWEtot tð Þ þ N0;BWEtot¼0 (9)

where cBWEtot in counts per hour (cph) per millimeter of BWEtot represents the change in N0 with BWEtot and
N0,BWEtot = 0 is the intercept of the regression, and

N0;Nr tð Þ ¼ cNr ·Nr tð Þ þ N0;Nr¼0 (10)

where cNr in counts per hour (cph) per one Nr (the Nr is given in arbitrary units; see section 2.7) represents the
change in N0 with the Nr, and N0,Nr = 0 is the intercept of the regression. The different calibration variants used
in this study are summarized in Table 1.

Table 1
Summary of Correction and Calibration Methods Used in This Study, as Well as Respective RMSE Values, Data Requirements, and Involved Equations and Figures

Biomass correction Calibration methods RMSE cm3/cm3 Data requirements Equation Figure

Not considered Method 1: Standard CRNS calibration
(e.g., Zreda et al., 2012)

0.125 One-time representative in situ SWC
estimate in the CRNS footprint (SWCif)

(7) 4

Method 2: CRNS calibration using SWC
time series (e.g., Bogena et al., 2013)

0.046 Continuous SWCif (7) 4

Aboveground biomass Method 3a: biomass correction according
to Baatz et al. (2015)

0.095 One SWCif, BWEa (7) 5 and 13

Method 3b: standard biomass correction
calibrated using in situ data

0.036 Multiple SWCif, BWEa (7) and (8) 5, 6 and 13

Method 3c: Nr biomass correction 0.032 Multiple SWCif (here continuous), TN (7) and (10) 12 and 13

Total biomass Method 3d: standard biomass correction
calibrated using in situ data

0.019 Multiple SWCif, BWEtot (7) and (9) 5, 6 and 11

Method 3e: combined in situ BWEb and Nr
biomass correction

0.013 Multiple SWCif, BWEtot, TN (7) and (9) 10 and 11

Note. RMSE = root-mean-square error; CRNS = cosmic ray neutron sensing; SWC = soil water content.
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3. Results
3.1. CRNS Measurements

The continuously measured FN and TN intensity at the Selhausen site during the growing season is presented
in Figure 3e. On average, the count rate of FN was about 5 times higher than the TN count rate (maximum,
mean, and minimum count rates per hour for FN and TN were 10,801, 9,484, 8,148, and 2,588, 2,212, 1,820,
respectively). This is partly related to the measurement setup with different amount of detectors for FN
and TN (three TN vs. seven FN detectors). In a drying period after frequent precipitation in June, a clear
increasing trend in FN and TN intensity can be observed. This is because of the progressing decrease in
SWC due to low precipitation and increasing evaporative demand, which can also be observed in the water
balance for the measurement period (accumulated precipitation minus accumulated actual evapotranspira-
tion, Figure 3c). Sharp decreases in FN (and to a lesser degree in TN) are related to strong precipitation events
and the associated increases in SWC. These are particularly evident at the end of October where the evapora-
tive demand has already decreased strongly.

3.2. In Situ SWC Measurements

The general course of vertically weighted SWC time series derived from the in situ SWC measurements mir-
rors the results from the neutron count measurements (Figure 3d). However, relatively strong differences in
absolute SWC are also visible between the sampling locations throughout the measurement period. After
July, the vertically weighted SWC at locations 19–26, which are closer to the CRNS probes, was generally
lower than SWC at the locations further away. An exception is the higher SWC at location 25, which was
related to a tractor track with highly compacted soil and low plant density that reduced both infiltration
and water extraction by vegetation at this particular location. Although the in situ measurements at stations
19–26 are restricted to the first 20 cm, the vertically weighted SWC data from these stations fall within the
overall observed SWC range. Thus, we conclude that the in situ SWC data from the SoilNet stations capture
the heterogeneous soil properties within the test field.

Figure 3. Time series of (a) precipitation, (b) potential and actual evapotranspiration, (c) the water balance (cumulative precipitation minus cumulative actual eva-
potranspiration, runoff is negligible as the site has almost no inclination), (d) SWC, (e) FN and TN intensity, and (f) neutron ratio, Nr. For SWC, the vertically and
horizontally weighted SWC using all SWC measurements (black line) and the vertically weighted SWC of the 26 SoilNet locations is shown. Please note that at
locations 1–18 SWC was measured in 5-, 20-, and 50-cm depths (orange lines), whereas at locations 19–26 SWC was measured in 5-, 10-, and 20-cm depths (blue
lines). Locations 19–26 exhibit lower σz values and thus water holding capacities which resulted in lower SWC. SWC = soil water content.
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3.3. Biomass Development

The measured development of BWEtot as well as BWEa and BWEb are shown in Figure 4c. All three biomass
measures increase until the end of July, and BWEa makes up the largest proportion of BWEtot. However,
BWEa started to decline noticeably in August, which coincides with a 2-month-long period of very low
SWC (Figure 3d). During this period, the actual evapotranspiration was also substantially lower than the
potential evapotranspiration (Figure 3b), indicating a prolonged drought situation that led to the drying of
leafs and leaf loss of the sugar beet plants. The spatially variable health status of the plants can also be
observed on a satellite image from 9 August 2016 (Figure 1, top right), and the German drought monitor indi-
cated that the study region experienced a moderate to severe drought during September and October. Such
droughts typically occur every 3–6 years and likely result in damage to crops and pasture (Zink et al., 2016).
The drought period was initiated in July where the cumulative actual evapotranspiration exceeded precipita-
tion by a factor of 4 (Figure 4d). Interestingly, the development of belowground biomass was less affected by
the summer drought as BWEb remained fairly constant after early August and increased strongly in the begin-
ning of September. The drought-induced decrease of BWEa and the stagnation of belowground biomass
growth led to a strong decrease in BWEtot during August. These findings demonstrate that the growth of
sugar beets at our test site was strongly influenced by water availability and that aboveground and below-
ground biomass development were influenced by drought to a different extent.

3.4. SWC Estimation Without Biomass Correction

Figure 4b shows the result of two different calibration approaches, both without the consideration of
dynamic changes in biomass. In Method 1, we used the in situ SWC from 15 May for calibration (red arrows,
Figure 4b). At this time, the field was free of vegetation. This method represents a calibration strategy used in
many CRNS studies (i.e., a single calibration at or shortly after detector deployment). The SWC estimates
obtained using this single calibration showed a growing discrepancy with the reference SWC estimates
throughout the measurement period, and the resulting RMSE of ~0.13 cm3/cm3 is high. In Method 2, the
whole time series of in situ SWC measurements was used for the calibration of a single value of N0. It can
be observed that the SWC estimates derived from CRNS measurements using this method also clearly

Figure 4. Time series of (a) precipitation, (b) soil moisture derived from FN intensity measurements and in situ SoilNet sensors, (c) measured and interpolated bio-
mass development from May to October 2016, and (d) the development of the ratio of monthly actual evapotranspiration and monthly precipitation. For soil
moisture estimation, the cosmic ray neutron sensing probe was either calibrated using only one day (15 May, red arrows) before the biomass development started
(Method 1, red line) or using the whole time series of in situ soil moisture (Method 2, blue line). RMSE = root-mean-square error.
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deviate from the reference SWC. In particular, SWC is underestimated until July and overestimated after July.
However, the resulting (RMSE) of 0.046 cm3/cm3 is still reasonably close to previous studies, for example,
~0.039 cm3/cm3 in Rivera Villarreyes et al. (2011) and 0.033 cm3/cm3 in Baatz et al. (2014). These results
clearly show that a single value of N0 cannot be used to accurately predict SWC, which we attribute to a
strong influence of biomass on the FN intensity.

3.5. SWC Estimation With Biomass Correction Using In Situ Measurements

First, we determined the calibration parameter N0 for each biomass sampling date from the measured FN
intensity and the reference SWC and correlated it with measured BWEa and BWEtot (Figure 5). The empirical
correction function of Baatz et al. (2015) has a considerably flatter slope in comparison to the site-specific
regression function (Figure 5, left). This indicates that site-specific calibration may be preferable for cropped
fields with relatively low biomass (i.e., dry aboveground biomass less than 5 kg/m2) as the correction function
of Baatz et al. (2015) was developed using data from forest sites with much higher amounts of biomass. The
linear regression between BWEtot and N0 provided a higher correlation coefficient compared to the linear
regression between BWEa and N0 (R2 = 0.83 vs. 0.54). Using these linear relationships and interpolated
BWEa and BWEtot estimates (Figure 4c), a temporally variable N0 was estimated and used to derive SWC esti-
mates corrected for dynamic changes in biomass with equations (7) and (8) (i.e., BWEa correction) or equa-
tion (9) (i.e., BWEtot correction). The accuracy of the SWC estimates as expressed by the RMSE improved to
0.036 cm3/cm3 when the temporally variable N0 was estimated from BWEa and to 0.019 cm3/cm3 when N0

was estimated from BWEtot (Figure 6).

Figure 5. Relationship between N0, calibrated at the times of biomass measurements using equation (7), and BWEa and BWEtot. The left plot also shows the linear
regression function proposed by Baatz et al. (2015), which shows a considerably flatter slope.

Figure 6. Reference in situ SWC (black line) and FN-derived SWC estimates corrected using equations (7) and (8) with BWEa (Method 3b, red line) and equations (7)
and (9) with BWEtot (Method 3d, blue line). SWC = soil water content; RMSE = root-mean-square error.
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SWC corrected using BWEa underestimated the reference SWC until
the beginning of August, while SWC was overestimated for the
remaining period (Figure 6). We attribute this to the variable ratio
between aboveground and belowground biomass of sugar beet
(Figure 4c), which was not considered in the correction using BWEa.
Therefore, we anticipate that BWEa measurements may be sufficient
for the correction of CRNS-derived SWC in the case of vegetation with
a relatively constant root-to-shoot ratio (i.e., BWEb to BWEa ratio). For
the more common case where this ratio is dynamic, a correction con-
sidering both BWEa and BWEb (i.e., BWEtot) will improve the accuracy
of CRNS-derived SWC.

When BWEtot is used for correction, notable deviations between esti-
mated and reference SWC still occur during and several days after pre-
cipitation events (e.g., in the beginning of August and September, as
well as in the last week of the measurement period). This may be due
to other hydrogen pools currently not accounted for, such as inter-
ception and ponding water, or shallow wetting of the soil surface
not captured by the in situ SWC sensors.

3.6. BWEa Estimation From the Neutron Ratio

Figure 7 shows the linear relationship between measured BWEa and the neutron ratio, Nr, determined from
the FN and TN intensity at the biomass sampling days. One obvious outlier, which corresponds to the last bio-
mass measurement, was excluded from the regression analysis (Figure 7, marked in green) because the neu-
tron signal was probably influenced by other hydrogen pools (e.g., interception and ponding water) during
this time. A comparison of BWEa estimated from the Nr and measured BWEa is provided in Figure 8. Periods
with overestimation of measured BWEa corresponded well with the occurrence of strong precipitation
events. For instance, the greatest discrepancy with an overestimation of about 4–5 mm occurred at the
end of the measurement period during a precipitation event of more than 20 mm/day that may have pro-
duced ponding of water at the soil surface. The steep decline in BWEa in the middle of August is well reflected
by the estimated BWEa obtained from the Nr. To improve the accuracy of the BWEa prediction, we tested the
exclusion of Nr measurements obtained up to 3 days after a 24-hr period with precipitation above 1.5 mm.
This data filtering further reduced the RMSE of the BWEa estimation from 1.3 mm to 0.75 mm (Figure 8,
red line).

3.7. Aboveground Dry Biomass Estimation Using the Neutron Ratio

We found that the aboveground dry biomass AGBd could be estimated from the BWEa predicted using the Nr

with an RMSE of 0.21 kg/m2 (R2 = 0.61) when the measured time-variable AGBrwas used (Figure 9). In the case
of a static AGBr, the RMSE increased only slightly to 0.22 kg/m2 (R2 = 0.52). Using only the Nr data that were

Figure 7. Relationship between BWEa and the Nr. The outlier marked in green
coincided with an extensive precipitation event at the end of the measurement
period and was therefore removed from the analysis.

Figure 8. Time series of measured (gray area) and Nr-derived (green) BWEa. The red line indicates an interpolated time series of Nr-derived BWEa where data points
were removed that occurred within 3 days after a 24-hr period with precipitation ≥1.5 mm. The observed increases in Nr-BWEa before the respective precipitation
events are explained by the use of a 3-day moving average. RMSE = root-mean-square error.
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not affected by precipitation events (i.e., Figure 9, dashed lines), the RMSE improved to 0.14 kg/m2 (R2 = 0.92)
and 0.18 kg/m2 (R2 = 0.67) for the dynamic and static AGBr, respectively.

The accuracy of the biomass estimates obtained with CRNS compared well with the typical accuracy reported
in remote sensing studies. For instance, Bendig et al. (2015) estimated dry aboveground biomass of summer
barley based on red-green-blue imaging from an unmanned aerial vehicle with a R2 of 0.83 and RMSE of
0.35 kg/m2. Using plant height as an input parameter for a crop model, they achieved a R2 of 0.85 and a
RMSE of 0.324 kg/m2. Using satellite imagery, Kross et al. (2014) estimated aboveground biomass of soybean
and corn with a R2 of 0.95 and 0.97, respectively.

3.8. SWC Estimation With Biomass Correction Using the Neutron Ratio

We tested whether the combined effect of belowground and aboveground biomass on SWC estimates
obtained from CRNS measurements can be corrected using the Nr. For this, in situ measured BWEbwas added

to the BWEa estimated from the Nr (Figure 8, green line) in order to
obtain an estimate of BWEtot (Nr-BWEtot in Figure 10). We found that
the use of this Nr-BWEtot further improved the linear relationship with
N0 as compared to the case with measured BWEtot (R

2 increased from
0.83 to 0.94; cf. Figures 5 [right] and Figure 10). When using this rela-
tionship to predict SWC, the RMSE between estimated and reference
SWC was further reduced from 0.019 to 0.013 cm3/cm3 (Figure 11).
Nevertheless, some deviations between predicted and reference
SWC are still visible after intensive precipitation events (e.g., begin-
ning of August and September) probably due to effects of ponding
of water, intercepted water on leaves, or strong SWC gradients in
the soil profile. In comparison to the correction based on measured
BWEtot, these deviations were reduced slightly, which may be
explained by the implicit inclusion of near-surface water in BWEa
determined from the Nr (Tian et al., 2016).

3.9. Relationship Between N0 and the Neutron Ratio

For the correction of the influence of BWEa on SWC estimates
obtained from CRNS measurements, a calibration between N0 and
BWEa is not strictly necessary as a regression analysis between N0

Figure 9. Time series of measured (gray) and Nr-derived dry aboveground biomass (Nr-AGBd) using a temporally variable (red line) or a mean ratio of dry to fresh
biomass (blue line). The dashed lines indicate interpolated time series of Nr-AGBd where data points were removed that occurred within 3 days after a 24-hr per-
iod with precipitation ≥1.5 mm. The increase in Nr-AGBd before precipitation events is explained by the use of a 3-day moving average. RMSE = root-mean-square
error.

Figure 10. Relationship between N0 calibrated at the times of biomass measure-
ments using equation (7) and Nr-derived BWEtot (Nr-derived BWEa as shown in
Figure 8 summed with measured BWEb).
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(here calibrated for all times with FN intensity measurements) and the Nr and the subsequent use of
equation (10) would be sufficient (Figure 12). This regression between N0 and Nr resulted in a relatively low
R2 (0.52) due to additional short-term influences on the Nr (e.g., interception storage and ponding).
Nevertheless, a significant linear relationship between N0 and the Nr was found. From the perspective of
correcting CRNS data for dynamic changes in biomass, this approach is far more convenient (i.e., less work
intensive and thus less time consuming) than using in situ measurements of BWEa to correct CRNS data as
suggested in other studies (Baatz et al., 2014; Franz, Zreda, Rosolem, & Ferré, 2013; Hawdon et al., 2014;
Hornbuckle et al., 2012; Rivera Villarreyes et al., 2011). We found that the use of a linear relationship
between N0 and the Nr was more accurate (RMSE of 0.032 cm3/cm3) than the site-specific linear correction
model, which yielded a higher RMSE of 0.036 cm3/cm3 (Figure 13). This higher accuracy may be explained
by a better BWEa representation of the Nr for the interpolated periods in between biomass samplings and
by the implicit consideration of hydrogen stored in additional pools.

4. Discussion
4.1. Comparison of Biomass Correction Methods

In this study, we showed that the simultaneous measurement of aboveground biomass and SWC with CRNS
is possible. In addition, it was shown that the accuracy of SWC estimates derived from CRNS measurements

improved when variations in aboveground and belowground bio-
mass were considered. We tested several correction methods to
account for biomass effects, and the data requirements and the
resulting measurement accuracy are summarized in Table 1. As
expected from previous studies (e.g., Andreasen, Jensen, Desilets,
Zreda, et al., 2017; Baatz et al., 2015), calibration during vegetation-
free conditions produced the lowest accuracy (Method 1), as the
effect of biomass on the SWC estimates is strongest in this case.
Using a time series of in situ SWC estimates for the calibration partly
incorporates the effect of biomass in the calibration parameter N0

(Method 2), and this resulted in periods with systematic underestima-
tion or overestimation of SWC and a relatively high RMSE of
0.046 cm3/cm3. This value is the highest accuracy that could be
achieved in this study without explicit consideration of the dynamical
changes in the size of the hydrogen pool contained in vegetation.

The biomass correction approach of Baatz et al. (2015; Method 3a)
was not able to account for the strong biomass effect of the sugar
beets in our experiment, as indicated by the high RMSE of
0.095 cm3/cm3. A comparison of the linear regression between N0

and BWEa based on Baatz et al. (2015) and the site-specific

Figure 11. Time series of measured (black line) and FN-derived SWC, either corrected using BWEtot (Method 3d, red line) or Nr-derived BWEtot (Method 3e, blue line)
using equations (7) and (9). RMSE = root-mean-square error; SWC = soil water content.

Figure 12. Relationship between N0 and Nr, where N0 was determined from the
FN intensity and the reference soil water content at each measurement time
using equation (7) without correction for biomass.
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measurements (Method 3b) presented in this study (Figure 5, left) shows a strong difference in the slope of
the linear relationship (�245 vs. �80). The difference can be explained by the much broader range of
aboveground biomass measurements used for their correction function (from bare soil conditions to
dense forest sites). This perhaps provides support for the results of Hawdon et al. (2014), who suggested a
nonlinear relationship between N0 and BWEa with a steep initial decrease of N0 for low BWEa and a
moderate decrease in N0 for higher BWEa. The results also suggest that plant structural properties, such as
surface coverage, leaf area index, plant height, and plant phenology, may also influence the relationship
between N0 and BWE. This dependence was already briefly discussed in Franz, Zreda, Rosolem, and Ferré
(2013) for forest ecosystems and should be further investigated, for example, using highly resolved
neutron transport simulations. The use of both aboveground and belowground biomass measurements for
the correction (Methods 3d and 3e) resulted in the highest SWC accuracy (RMSE of 0.19–0.13 cm3/cm3),
which confirms that the belowground biomass has a strong influence on the FN intensity (e.g., Franz,
Zreda, Rosolem, & Ferré, 2013). However, the sampling of roots down to 40 cm is very time consuming
and the moderate increase in accuracy of the SWC estimates might not justify this extra work.
Alternatively, the use of the Nr for the correction of biomass effects (Methods 3c) considerably improved
the accuracy of the SWC measurements by CRNS (RMSE of 0.032 cm3/cm3) without the need for
biomass determination.

4.2. Potential for Biomass Estimation

The drought conditions in the second half of the measurement period affected the plant development and
led to a decrease in aboveground biomass. These conditions provided a good opportunity to test methods to
estimate dry aboveground biomass from the Nr, and good accuracy could be achieved (RMSE of 0.14–0.22 kg/
m2). In this context, it is important to realize that satellite-basedmethods for biomass estimation typically rely
on optical methods, which do not represent the drying of leaf biomass well because of the color change from
green to yellowish brown (Butterfield & Malmstrom, 2009). Therefore, we expect that biomass estimates from
CRNS outperform satellite-based methods in situations with drought-induced biomass decline. This suggests
a high potential for the use of CRNS measurements for simultaneous estimation of SWC and biomass, which
will be particularly beneficial in semiarid and arid climates.

4.3. Remaining Uncertainties

The remaining uncertainty in the biomass estimates obtained from CRNS measurements was partly asso-
ciated with precipitation events, which clearly suggests that the Nr is also sensitive to interception, ponding
water (Tian et al., 2016), and possibly also to shallow SWC (Andreasen, Jensen, Desilets, Zreda, et al., 2017).
Clearly, the accuracy of biomass estimates obtained from CRNS may suffer from these confounding influ-
ences in humid or rainy conditions. In an agricultural context, we therefore recommend that the relationship
between Nr and N0 is established using data from periods with dry leaf surfaces and without ponding water.

Figure 13. Time series of measured reference SWC (black line), estimated SWC after correction for measured BWEa using equations (7) and (8) with the site-specific
linear regression (Method 3b, blue line; cf. Figure 5, left), estimated SWC calibrated on 15 May (red arrows) and corrected using measured BWEa with the empirical
vegetation correction found by Baatz et al. (2015; Method 3a, red line), and estimated SWC after correction for BWEa using equations (7) and (10) and the linear
relationship between Nr and N0 (Figure 12, Method 3c, green line). RMSE = root-mean-square error; SWC = soil water content.
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At the same time, this sensitivity of the Nr to other hydrogen pools also offers opportunities. For example, it
may be possible to estimate the interception storage in addition to biomass from the Nr by assuming that
these two processes affect the Nr at different time scales, that is, biomass changes occur on weekly time
scales whereas interception occurs on daily time scales (Baroni & Oswald, 2015).

Based on their modeling results, Andreasen, Jensen, Desilets, Zreda, et al. (2017) expected that the Nr was
independent of SWC, which contradicted their measurement results that clearly showed a relationship
between Nr and SWC. In our study, Nr and average SWC at 5-cm depth were uncorrelated (R2 = 0.008). This
may partly be explained by the uppermost part of the sugar beets that extruded from the surface (up to
~5 cm) during the later growth stage, which may have attenuated SWC effects on the Nr to some extent.
In addition, it has to be noted that SWC variations near the surface (i.e., <5 cm below ground) were not cap-
tured by our in situ measurements. We also explored whether the Nr can be used to directly predict BWEb or
BWEtot, but no meaningful relationships were found.

In this study, we did not consider that the FN and TN footprints are likely not the same. This potential scale
mismatch may become important in case of strong spatial heterogeneity of soil properties and biomass.
However, only the FN footprint has been characterized in several modeling studies so far (e.g., Köhli et al.,
2015; Schrön et al., 2017; Zreda et al., 2008). The size of the TN footprint and the factors that influence it
are still unclear and need to be addressed by dedicated neutron modeling studies. Nevertheless, our results
indicate that the proposed methods worked well even for a relatively heterogeneous research site (cf.
Figure 1).

The results presented in this study are limited to a single vegetation type, and it is likely that the linear rela-
tionships reported here cannot be applied to other crops without adjustments in the parameterization.
Therefore, further research with different vegetation types is necessary to allow the derivation of more gen-
eral corrections functions. In particular, it may be possible to relate plant structural properties, such as leaf
area index, vegetation height, and the root-to-shoot ratio, to the variables used for the linear
regression models.

The experimental setup in this study relied on multiple neutron detectors in order to increase the CRNS sen-
sitivity to the extent possible. It is well established that higher count rates obtained by using more detectors
or longer integration times will significantly increase the SWC measurement accuracy as shown by Bogena
et al. (2013). Therefore, we recommend using longer integration times for studies that rely on a single detec-
tor, and the challenge here is to find a suitable trade-off between count rate uncertainty and time resolution
(e.g., 24 hr). For biomass detection using CRNS, our study showed that a 3-day integration time to obtain reli-
able estimates of Nr is suitable, which is rather long but not problematic due to expected slow changes in
biomass. Alternatively, a new generation of detector devices based on boron-10 layers is emerging, which
will enable higher count rates at a relatively low price (e.g., Weimar, 2017). Such detectors are expected to
open up new possibilities for the detection of hydrogen pools with low residence time (e.g., interception
and ponded water).

Finally, it has to be noted that the unshielded neutron detectors used to determine TN are also sensitive to FN
to some extent (5% of the measured neutrons) and that the moderated detectors are also sensitive to TN
(45% of the measured neutrons; Andreasen et al., 2016; McJannet et al., 2014). Thus, an improved distinction
between TN and FN, for example, using the cadmium difference method developed by Andreasen et al.
(2016), would lead to more accurate estimates of the Nr, which may in turn increase the accuracy of the pro-
posed soil moisture and biomass estimation methods.

5. Conclusions and Outlook

In our study with sugar beets, we found that the influence of dynamic changes of aboveground biomass on
cosmic ray SWC measurements can be corrected using the ratio of TN to FN (Nr). This is in agreement with
findings of Tian et al. (2016) for other crops (maize and soy bean). We also demonstrated that the Nr approach
gives better results compared to the common approach for correcting biomass effects on CRNS data using in
situ biomass measurements. Furthermore, we showed that the Nr can also be used for the continuous deter-
mination of aboveground BWE and dry aboveground biomass. The impact of dynamic changes in above-
ground and belowground BWE could both be considered using linear regressions with the CRNS
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calibration parameter N0. These findings suggest that CRNS measurements can be used for simultaneous
measurement of SWC and biomass, for example, to support the investigation of drought effects on
crop production.

Future research should aim to confirm the general applicability of the proposed methods for other crops,
with a particular focus on crops with less biomass production (e.g., wheat). A particular challenge here is that
the Nr is also sensitive to other hydrogen pools located on or close to the soil surface, such as snow, intercep-
tion, and ponding water. Furthermore, SWC from shallow depth and belowground biomass may also influ-
ence the value of the Nr. Thus, future studies should consider monitoring these additional hydrogen pools
(e.g., interception storage and ponding water) to allow a better discrimination of the various contributions
to the CRNS measurements. However, given the large number of hydrogen pools and the involved measure-
ment challenges, we also suggest using appropriate soil hydrological and vegetation models to support the
interpretation of CRNS measurements. Promising choices would be the use of vadose zone models (e.g.,
HYDRUS-1D; Simunek et al., 2008) that simulate the generation of surface ponding, SWC gradients very close
to the soil surface (which is difficult to measure), and water stored in the litter layer (cf. Bogena et al., 2013) or
models that simulate soil water and carbon fluxes as well as dynamic plant growth in agricultural systems
(e.g., AgroC; Klosterhalfen et al., 2017). The combination with crop growth models is particularly interesting
because it would allow to obtain information regarding the root-to-shoot-ratio that relates aboveground
and belowground biomass, which is required to estimate belowground biomass from the Nr.

Within the cosmic ray community, mobile measurement systems (i.e., cosmic rovers) are gaining popularity
for monitoring SWC of larger areas (Avery et al., 2016; Franz et al., 2015; McJannet et al., 2014). Accurate
biomass and SWC data on scales of tens to hundreds of kilometers, which can be provided by cosmic
ray roving systems, bear immense potential for resource management. For instance, SWC and dynamic
biomass development data can jointly be used as indicators for the control of irrigation systems, with
the aim of maximizing the water use efficiency (Jones, 2004). The work presented here extends the use
of cosmic rovers to simultaneous measurements of aboveground biomass and SWC and allows the contin-
uous correction of aboveground biomass effects on SWC prediction without the need for laborious local
biomass calibration.

Appendix A: In Situ SWC Weighting
The appropriate weights of the in situ SWC sensors depend on the sensing depth of the CRNS probes. In ana-
logy to Franz, Zreda, Rosolem, and Ferré (2012), the sensing depth (D86) is assumed to depend on the soil
water equivalent of all hydrogen stored in the soil (θeq; i.e., SWC + LW + SOW + BWEb) and is defined as
the depth above which 86% of the measured neutrons originate. In addition, D86 depends on the distance
(r [meters]) between the CRNS probe and the in situ SWC sensors (Köhli et al., 2015). For the weighting
of point measurements r is rescaled (rs) to adapt to pressure and vegetation height variations (Schrön
et al., 2017):

rs ¼ r=f p=f veg (A1)

where fp is the scaling factor for atmospheric pressure and fveg is the scaling factor for vegetation height. They
are calculated as follows (Schrön et al., 2017):

f p ¼ 0:5
0:86� exp�P=Pref

(A2)

f veg ¼ 1� 0:17· 1� exp�0:41·Hveg
� �

· 1þ exp�9:25·θeq;av
� �

(A3)

where Pref is the standard atmospheric pressure at sea level (1,013.25 hPa), P is the measured atmospheric
pressure (hPa), Hveg is the vegetation height (cm), and θeq, av is the average soil water equivalent of each
SWCmeasurement profile and given in in cm3/cm3, respectively. According to Köhli et al. (2015), a vegetation
height of 2 m corresponds to a BWE of 8.8 kg/m2 in their neutron transport model. We assumed a linear rela-
tionship between plant height and aboveground biomass (BWEa) and used the field measurements of BWEa
to calculate the corresponding Hveg values. Then, the penetration depth at each measurement location (D86)
can be calculated:
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D86 ¼ 1
pbd

· p0 þ p1· p2 þ exp�p3·rsð Þ· p4 þ θeq;av
p5 þ θeq;av

� �
(A4)

where the values of the fitting parameters p0–5 are 8.321, 0.14249, 0.96655, 0.01, 20, and 0.0429 (Schrön et al.,
2017). The depth-specific weighting factors (Wd) for the in situ SWC sensors and the vertically weighted SWC
(θwd) for the reference SWC stations were calculated using

Wd ¼ exp�2d=D86 (A5)

and

θwd ¼ ∑θ·Wd

∑Wd
(A6)

Now, the horizontal weights (Wr) for the SoilNet locations can be calculated using

Wr≈
F1 exp

�F2rs þ F3 exp
�F4rs ; 1 m < rs≤50 m

F5 exp�F6rs þ F7 exp�F8rs ; 50 m < rs < 600 m

(
(A7)

The parametric functions F1–8 in equation (A7) consider the local θwd variations and the influence of atmo-
spheric water content changes. We refer to Schrön et al. (2017) for a full description of the weightingmethod.
They added another parametric function for distances between 0 and 1 m and altered the succeeding para-
meter functions to be valid from 1 to 50 m. The benefits of the additional parametric function cannot be eval-
uated in this study, since in situ measurements were only taken at distances larger than 3 m. The final
weighted SWC within the CRNS footprint (θhv) was calculated using

θhv ¼ ∑θwd·Wr

∑Wr
(A8)

All calculations in Appendix A were iterated until θhv values converged within 1 vol.% accuracy (Schrön et al.,
2017). For this, θeq, av was substituted with the depth weighted SWC of each measurement profile, θwd
summed with LW, SOW, and BWEb.

Appendix B: Neutron Count Corrections
Since the cosmic ray flux through the atmosphere is exponentially attenuated as a function of the traversed
cumulative mass, measured neutron count rates need to be normalized to standard atmospheric pressure
using

Np ¼ Nraw·e
P�P0
Lð Þ (B1)

where Np is the neutron count rate corrected for atmospheric pressure, Nraw is the raw neutron count rate,
P0 is the reference atmospheric pressure (1,013.25 hPa), P is the actual atmospheric pressure, and L
denotes the local mass attenuation length (131.6 g/cm2; Desilets & Zreda, 2003). The neutron intensity
at ground level also strongly depends on the amount of incoming cosmic radiation. In this study, data
from neutron monitors at the Jungfraujoch in Switzerland (stations JUNG and JUNG1 averaged, freely
available at www.nmdb.eu) were used to correct for incoming radiation using the following correction
function:

Npi ¼ Np·
Iref
I

(B2)

where Npi is the neutron count rate corrected for variations in incoming cosmic radiation, and I and Iref (for
this study the mean of Iwas chosen) are the current and reference neutron monitor count rates, respectively.
In a third step, we accounted for the effect of atmospheric water vapor fluctuations on neutron intensity
using the approach of Rosolem et al. (2013):
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Npih ¼ Npi · 1þ 0:0054· pv0 � prefv0

� �� �
(B3)

where Npih is the neutron count rate corrected for variations in water vapor, pv0 the actual absolute humidity
(g/m3) and prefv0 the reference absolute humidity (0 g/m3) at 2-m height.

Appendix C: Correction of TN Used in the Nr
For our data set, we empirically investigated how TN (and FN) used for the calculation of the Nr should be cor-
rected to obtain the best estimate of BWEawith equation (4). The performance was evaluated based on RMSE
and R2. To test the different corrections, we substituted the TN and FN intensity in equation (3) using combi-
nations of the corrections for pressure (subscript p), incoming cosmic radiation (subscript i), and atmospheric
water vapor (subscript h) (see Appendix B). The subscript (raw) indicates the uncorrected neutron intensity
measured directly with the cosmic ray probes, which was tested for comparison to Tian et al. (2016). The
results are summarized in Table C1. We found the highest R2 (0.95) and lowest RMSE (1.3 mm) when Nr

was calculated from TNph and FNpih. Therefore, this combination was consequently used for the calculation
of the Nr. In the main manuscript, TN is used to indicate TNph and FN is used to indicate FNpih.

Appendix D: Derivation of Equation (5)
Here we present the derivation of equation (5) used for the calculation of AGBd from the Nr. First, we reformu-
lated equation (1) by using AGBf and AGBd instead of BMf and BMd, respectively:

BWEa ¼ AGBf � AGBdð Þ þ f ew ·AGBd½ �·ρw ·pd (D1)

Then the combination of equations (D1) and (6) produces equation (D2):

BWEa ¼ AGBd
AGBr

þ AGBd ·f ew � AGBd

� 	
·pw ·pd (D2)

Solving for AGBd, we obtain

AGBd ¼ BWEa
1

AGBr
þ f ew � 1

� � ·
1

pw ·pd
(D3)

Finally, AGBd and BWEa where replaced with their Nr-derived counterparts Nr-AGBd and Nr-BWEa, respectively.
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