000851495 001__ 851495
000851495 005__ 20210129234922.0
000851495 0247_ $$2doi$$a10.1016/j.agrformet.2018.08.011
000851495 0247_ $$2ISSN$$a0168-1923
000851495 0247_ $$2ISSN$$a1873-2240
000851495 0247_ $$2Handle$$a2128/19661
000851495 0247_ $$2WOS$$aWOS:000449236500016
000851495 037__ $$aFZJ-2018-05121
000851495 082__ $$a630
000851495 1001_ $$00000-0002-2746-3713$$aŽydelis, R.$$b0$$eCorresponding author
000851495 245__ $$aA model study on the effect of water and cold stress on maize development under nemoral climate
000851495 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000851495 3367_ $$2DRIVER$$aarticle
000851495 3367_ $$2DataCite$$aOutput Types/Journal article
000851495 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536569010_25366
000851495 3367_ $$2BibTeX$$aARTICLE
000851495 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851495 3367_ $$00$$2EndNote$$aJournal Article
000851495 520__ $$aFarmers in northern latitudes face significant risks because of low temperatures and water shortage when attempting to benefit from climate warming by expanding maize for grain. The study was aimed to investigate maize development and suitability of two models to simulate maize growth in a cool climate.Field experiments were conducted at the Lithuanian Research Centre for Agriculture and Forestry on sandy loam soil. Management was performed to guarantee optimum growth. The AquaCrop and AgroC models were calibrated and validated using the data sets from 2015 (cool/dry season) and 2016 (warm/wet), respectively.Both models provided adequate results in terms of simulating total above-ground biomass, grain yield, canopy cover, and soil water content. Grain yield losses due to abiotic stress (low temperature and water shortage) simulated with AquaCrop were 3.41 t ha−1 in cool/dry and 2.02 t ha−1 in warm/wet seasons and for AgroC 4.32 and 2.84 t ha−1, respectively.Maize grain yield above 9 t ha−1 (dry weight) was obtained under favourable temperature and rainfall regime in nemoral climate. Low air temperature, is the main factor defining yield losses, while the water stress, which occurs occasionally, is of secondary importance.
000851495 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000851495 588__ $$aDataset connected to CrossRef
000851495 7001_ $$0P:(DE-Juel1)129553$$aWeihermüller, L.$$b1$$ufzj
000851495 7001_ $$0P:(DE-Juel1)172684$$aHerbst, M.$$b2$$ufzj
000851495 7001_ $$0P:(DE-Juel1)159313$$aKlosterhalfen, A.$$b3
000851495 7001_ $$0P:(DE-HGF)0$$aLazauskas, S.$$b4
000851495 773__ $$0PERI:(DE-600)2012165-9$$a10.1016/j.agrformet.2018.08.011$$gVol. 263, p. 169 - 179$$p169 - 179$$tAgricultural and forest meteorology$$v263$$x0168-1923$$y2018
000851495 8564_ $$uhttps://juser.fz-juelich.de/record/851495/files/1-s2.0-S0168192318302715-main.pdf$$yRestricted
000851495 8564_ $$uhttps://juser.fz-juelich.de/record/851495/files/Paper.pdf$$yPublished on 2018-08-18. Available in OpenAccess from 2020-08-18.
000851495 8564_ $$uhttps://juser.fz-juelich.de/record/851495/files/Spplementary_Material.pdf$$yPublished on 2018-08-18. Available in OpenAccess from 2020-08-18.
000851495 8564_ $$uhttps://juser.fz-juelich.de/record/851495/files/1-s2.0-S0168192318302715-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851495 8564_ $$uhttps://juser.fz-juelich.de/record/851495/files/Paper.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-08-18. Available in OpenAccess from 2020-08-18.
000851495 8564_ $$uhttps://juser.fz-juelich.de/record/851495/files/Spplementary_Material.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-08-18. Available in OpenAccess from 2020-08-18.
000851495 909CO $$ooai:juser.fz-juelich.de:851495$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000851495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129553$$aForschungszentrum Jülich$$b1$$kFZJ
000851495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172684$$aForschungszentrum Jülich$$b2$$kFZJ
000851495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159313$$aForschungszentrum Jülich$$b3$$kFZJ
000851495 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000851495 9141_ $$y2018
000851495 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851495 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000851495 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851495 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000851495 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAGR FOREST METEOROL : 2015
000851495 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851495 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851495 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851495 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851495 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851495 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000851495 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851495 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000851495 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851495 920__ $$lyes
000851495 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000851495 980__ $$ajournal
000851495 980__ $$aVDB
000851495 980__ $$aUNRESTRICTED
000851495 980__ $$aI:(DE-Juel1)IBG-3-20101118
000851495 9801_ $$aFullTexts