001     851495
005     20210129234922.0
024 7 _ |a 10.1016/j.agrformet.2018.08.011
|2 doi
024 7 _ |a 0168-1923
|2 ISSN
024 7 _ |a 1873-2240
|2 ISSN
024 7 _ |a 2128/19661
|2 Handle
024 7 _ |a WOS:000449236500016
|2 WOS
037 _ _ |a FZJ-2018-05121
082 _ _ |a 630
100 1 _ |a Žydelis, R.
|0 0000-0002-2746-3713
|b 0
|e Corresponding author
245 _ _ |a A model study on the effect of water and cold stress on maize development under nemoral climate
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1536569010_25366
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Farmers in northern latitudes face significant risks because of low temperatures and water shortage when attempting to benefit from climate warming by expanding maize for grain. The study was aimed to investigate maize development and suitability of two models to simulate maize growth in a cool climate.Field experiments were conducted at the Lithuanian Research Centre for Agriculture and Forestry on sandy loam soil. Management was performed to guarantee optimum growth. The AquaCrop and AgroC models were calibrated and validated using the data sets from 2015 (cool/dry season) and 2016 (warm/wet), respectively.Both models provided adequate results in terms of simulating total above-ground biomass, grain yield, canopy cover, and soil water content. Grain yield losses due to abiotic stress (low temperature and water shortage) simulated with AquaCrop were 3.41 t ha−1 in cool/dry and 2.02 t ha−1 in warm/wet seasons and for AgroC 4.32 and 2.84 t ha−1, respectively.Maize grain yield above 9 t ha−1 (dry weight) was obtained under favourable temperature and rainfall regime in nemoral climate. Low air temperature, is the main factor defining yield losses, while the water stress, which occurs occasionally, is of secondary importance.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Weihermüller, L.
|0 P:(DE-Juel1)129553
|b 1
|u fzj
700 1 _ |a Herbst, M.
|0 P:(DE-Juel1)172684
|b 2
|u fzj
700 1 _ |a Klosterhalfen, A.
|0 P:(DE-Juel1)159313
|b 3
700 1 _ |a Lazauskas, S.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.agrformet.2018.08.011
|g Vol. 263, p. 169 - 179
|0 PERI:(DE-600)2012165-9
|p 169 - 179
|t Agricultural and forest meteorology
|v 263
|y 2018
|x 0168-1923
856 4 _ |u https://juser.fz-juelich.de/record/851495/files/1-s2.0-S0168192318302715-main.pdf
|y Restricted
856 4 _ |y Published on 2018-08-18. Available in OpenAccess from 2020-08-18.
|u https://juser.fz-juelich.de/record/851495/files/Paper.pdf
856 4 _ |y Published on 2018-08-18. Available in OpenAccess from 2020-08-18.
|u https://juser.fz-juelich.de/record/851495/files/Spplementary_Material.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/851495/files/1-s2.0-S0168192318302715-main.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2018-08-18. Available in OpenAccess from 2020-08-18.
|x pdfa
|u https://juser.fz-juelich.de/record/851495/files/Paper.pdf?subformat=pdfa
856 4 _ |y Published on 2018-08-18. Available in OpenAccess from 2020-08-18.
|x pdfa
|u https://juser.fz-juelich.de/record/851495/files/Spplementary_Material.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:851495
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129553
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159313
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AGR FOREST METEOROL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21