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Abstract. In this paper, we present and analyze a novel global database of soil infiltration measurements, the
Soil Water Infiltration Global (SWIG) database. In total, 5023 infiltration curves were collected across all con-
tinents in the SWIG database. These data were either provided and quality checked by the scientists who per-
formed the experiments or they were digitized from published articles. Data from 54 different countries were
included in the database with major contributions from Iran, China, and the USA. In addition to its extensive
geographical coverage, the collected infiltration curves cover research from 1976 to late 2017. Basic information
on measurement location and method, soil properties, and land use was gathered along with the infiltration data,
making the database valuable for the development of pedotransfer functions (PTFs) for estimating soil hydraulic
properties, for the evaluation of infiltration measurement methods, and for developing and validating infiltration
models. Soil textural information (clay, silt, and sand content) is available for 3842 out of 5023 infiltration mea-
surements ( ~ 76%) covering nearly all soil USDA textural classes except for the sandy clay and silt classes.
Information on land use is available for 76 % of the experimental sites with agricultural land use as the dom-
inant type (~40%). We are convinced that the SWIG database will allow for a better parameterization of the
infiltration process in land surface models and for testing infiltration models. All collected data and related soil
characteristics are provided online in *.xlsx and *.csv formats for reference, and we add a disclaimer that the
database is for public domain use only and can be copied freely by referencing it. Supplementary data are avail-
able at https://doi.org/10.1594/PANGAEA.885492 (Rahmati et al., 2018). Data quality assessment is strongly
advised prior to any use of this database. Finally, we would like to encourage scientists to extend and update the
SWIG database by uploading new data to it.
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1 Introduction

Infiltration is the process by which water enters the soil sur-
face and it is one of the key fluxes in the hydrological cycle
and the soil water balance. Water infiltration and the subse-
quent redistribution of water in the subsurface are two im-
portant processes that affect the soil water balance (Camp-
bell, 1985; Hillel, 2013; Lal and Shukla, 2004; Morbidelli et
al., 2011) and influence several soil processes and functions
including availability of water and nutrients for plants, mi-
crobial activity, erosion rates, chemical weathering, and soil
thermal and gas exchange between the soil and the atmo-
sphere (Campbell, 1985). Infiltration plays a definitive role
in maintaining soil system functions and as it is a key pro-
cess that controls several of the United Nations goals for
sustainability (Keesstra et al., 2016). The generation of sur-
face runoff, a key factor in controlling floods, is also directly
related to the infiltration process. Water that cannot infil-
trate in the soil becomes available for surface runoff. Two
main mechanisms are responsible for the generation of ex-
cess water that produce overland flow: Dunne saturation ex-
cess and Hortonian infiltration excess (Sahoo et al., 2008).
Dunne overland flow, or saturation excess, occurs when the
soil profile is completely saturated and precipitation can no
longer infiltrate into soil. The Dunne mechanism is more
common to near-channel areas or is generated from partial
areas of the hillslope where water tables are shallowest (Sa-
hoo et al., 2008). On the other hand, Hortonian overland flow
is characterized by rainfall intensities exceeding the infiltra-
tion rate of the soil. In other words, during a rainfall event,
water infiltration at the soil surface and runoff are highly de-
pendent on the boundary conditions, namely, the rainfall in-
tensity and the soil hydraulic properties. If the rainfall inten-
sity is less than the soil infiltrability, water will completely
infiltrate into the soil without any runoff (Hillel, 2013). In
this case, the infiltration rate align with the rainfall intensity.
Otherwise, if the precipitation intensity exceeds the soil infil-
tration rate at a certain moment in time, excess water will be
generated even if the soil profile is unsaturated. In this case
water will pond on the soil surface and become available for
surface runoff. If this occurs, the boundary condition at the
soil surface undergoes a shift in the dominant flow process
from one governed by capillary action to one governed by
pressures of hydraulic head. Assuming that the water pres-
sure heads remain constant at the soil surface, the infiltration
rate is described by a decreasing function over time, tending
towards the value of the hydraulic conductivity function for
the water pressure head imposed at the soil surface (Angulo-
Jaramillo et al., 2016; Chow et al., 1988). In the past decades,
water infiltration tests, using either ponded or tension infil-
trometers, have been developed to quantify the cumulative
infiltration at the soil surface. In these cases, the 3-D axisym-
metric water infiltration corresponds to an upper boundary

www.earth-syst-sci-data.net/10/1237/2018/

defined by a constant water pressure head or a series of con-
stant water pressure heads. The infiltration process is quan-
tified by determining the amount of water which infiltrates,
over time, from which the cumulative infiltration, 7(¢), (L),
and the infiltration rate, i (r), (LT~') can be derived. i(r) and
1(¢) are related to each other by derivation (Campbell, 1985;
Hillel, 2013; Lal and Shukla, 2004):

d1
i(t) = %. (1

As stated above, the infiltration rate i(¢) is expected to de-
crease to a plateau defined by the value of the hydraulic
conductivity corresponding to the imposed water pressure
head plus a term related to radial water infiltration (Angulo
et al., 2016). In the case of large rings, the final infiltration
rate approaches the value of the hydraulic conductivity corre-
sponding to the imposed water pressure head (gravity flow).
Consequently, if water ponding is imposed at the surface,
i(t) tends towards the saturated hydraulic conductivity. In-
filtration into the soil is controlled by several factors includ-
ing soil properties (e.g., texture, bulk density, initial water
content), layering, slope, cover condition (vegetation, crust,
and/or stone), rainfall pattern (Smith et al., 2002; Corradini
et al., 2017), and time. As soil texture and soil surface con-
ditions (e.g., cover) are independent of time at the scale of
individual infiltration events, these characteristics can be as-
sumed to be constant during the event. On the other hand, soil
structure, especially at the soil surface, can rapidly change,
for instance, due to tillage, grazing, or the destruction of
soil aggregates by rain drop impact. In dry soils, initial in-
filtration rates are substantially higher than the saturated hy-
draulic conductivity of the surface layer due to capillary ef-
fects which control the sorptivity of the soil. However, as in-
filtration proceeds, the gradient between the pressure head at
the soil surface and the pressure head below the wetting front
reduces over time so that the infiltration rate finally reaches
a constant value that approximates saturated hydraulic con-
ductivity (Chow et al., 1988).

Infiltration measurements have been largely used to esti-
mate soil saturated hydraulic conductivity. This soil property
is a key factor to correctly describe all the components of the
soil and land surface hydrological balance and is essential in
the appropriate design of irrigation systems. Within the lit-
erature it is clear that extensive efforts have been made to
estimate this property from basic soil properties using pedo-
transfer functions (PTFs). PTFs are knowledge-based rules
or equations that relate simple soil properties to those prop-
erties of soil that are more difficult to obtain (Van Looy et
al., 2017). Most of these efforts have been based on mea-
surements made on samples of disturbed or undisturbed soil
material. With this infiltration database, data are now made
available that may contribute to better predicting the satu-
rated soil hydraulic conductivity and demonstrate the effect

Earth Syst. Sci. Data, 10, 1237-1263, 2018
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of, for example, vegetation and land management on the pa-
rameters of interest.

The Richards (1931) equation, Eq. (2), written as a func-
tion of soil water content which is often referred to as the
Fokker—Planck water diffusion equation, can be used to de-
rive the closed-form expression of the infiltration rate in par-
tially saturated soils.

90 9

9
ar 9z 9

(Dz (9)8—Z+Kz (9)), (2)
where 6 is the volumetric soil water content (L3 L™3); 7 is
the time (T); z is the vertical depth position (L); K(0) is the
soil hydraulic conductivity (LT~"); and D(9) is soil water
diffusivity (L2 T~1), which is defined by Eq. (3) (Childs and
Collis-George, 1950; Klute, 1952):

D;(0) = K; (9)%, 3)
00

where A is the matric potential in head units (L). The exact
relationships between soil water content, soil matric poten-
tial, and soil hydraulic conductivity are necessary to solve the
Richards equation. Several solutions of the Richards equa-
tion and many empirical, conceptual, semi-analytical, and
physically based models — e.g., Green and Ampt (1911),
Philip (1957), Smith and Parlange (1978), Haverkamp et
al. (1994), and Corradini et al. (2017) — have been introduced
to describe the infiltration process over time, even for pref-
erential flows, e.g., Lassabatere et al. (2014). Furthermore,
several direct or indirect experimental systems have been in-
troduced to measure soil infiltration in the laboratory or in the
field under different conditions (Gupta et al., 1994; McKen-
zie et al., 2002; Mao et al., 2008a). Data obtained from these
systems can also be used to deduce soil saturated hydraulic
conductivity directly.

Methods developed to measure and quantify water infiltra-
tion in soil are generally time-consuming and costly. There-
fore, PTFs have been developed and applied by many re-
searchers — e.g., Jemsi et al. (2013), Parchami-Araghi et
al. (2013), Kashi et al. (2014), Sarmadian and Taghizadeh-
Mebhrjardi (2014), and Rahmati (2017) — in order to easily
parameterize infiltration models. However, these PTFs have
been developed for specific regions, often limiting their ap-
plicability. As already mentioned, a large number of publi-
cations reporting soil infiltration data is available, but these
data are dispersed in the literature and often difficult to ac-
cess. Therefore, the aim of this data paper is to present and
make available a collection of infiltration data digitized from
available literature and from published or unpublished data
provided directly by researchers around the world. These
data are accompanied by metadata, which provide informa-
tion about the location of the infiltration measurement, soil
properties, and land management. Finally, we will provide
some first results highlighting the suitability of the database
for further research. The main article is also accompanied by
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a supplement providing more detailed information about the
different methodologies to measure soil infiltration. This is
added because many of readers are likely not well versed in
soil infiltration and its limitations in measurement and mod-
eling. For more detailed information on this, readers could
refer to Smith et al. (2002), Corradini et al. (2017), and Hop-
mans et al. (2006).

2 Method and materials

2.1 Data collection

We collected infiltration measurements from different coun-
tries or regions by contacting the data owners or by extract-
ing infiltration data from published literature (Fig. 1). To do
this, a data request was sent to potential data owners through
different forums and email exchanges. The flyer asked data
owners to cooperate in the development of the Soil Water In-
filtration Global (SWIG) database by providing infiltration
data as well as metadata about experimental conditions (e.g.,
initial soil moisture content at the start of the experiment
and method used), soil properties, land use, topography, ge-
ographical coordinates of the sites, and any other relevant
information to interpret the data and to increase the value of
the database. Infiltration data reported in the literature were
digitized and included in the database together with addi-
tional information provided in these papers. The digitization
approach is discussed in Sect. 2.2. In total, 5023 single infil-
tration curves were collected, of which 510 infiltration curves
were digitized from 74 published papers (Table 1) and 4513
were provided by 68 different research teams (Table 2), be-
ing published or unpublished data. The references and corre-
spondences for data supplied by direct communications with
researchers are also reported in Table 2. Therefore, users may
refer to these references for detailed information about the
applied methods or procedures.

2.2 Data digitization

In order to digitize infiltration curves reported in the liter-
ature, screenshots of the relevant plots were taken, and fig-
ures were imported into the plot digitizer 2.6.8 (Huwaldt and
Steinhorst, 2015). First, the origin of the axes and the high-
est x and y values were defined and the diagram plane was
spanned. Then, all point values were picked out and an output
table with the x—y pairs (time vs. infiltration rate or cumula-
tive infiltration) was generated and stored.

2.3 Database structure

The SWIG database is prepared in *.xlsx with a backup
file in *.csv formats containing several datasets. Supplemen-
tary data are available at https://doi.org/10.1594/PANGAEA.
885492 (Rahmati et al., 2018) . The first dataset, named
“I_cm”, contains cumulative infiltration data in centimeter

www.earth-syst-sci-data.net/10/1237/2018/
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Field experiment locations across the globe
129 scientists from 92 institutions
5023 single infiltration curves
215 sites from 53 countries

digitization
from
literature

[%] Sand 50-2000

Figure 1. SWIG flowchart.

units and is referred to as “Ixxxx”, whereby “xxxx” is the
identifier of the individual infiltration test. The correspond-
ing time intervals in hours for the infiltration data are la-
beled “T_Hour” and named “Txxxx”. The constant or vary-
ing pressure or tension heads (if any) during infiltration mea-
surements are also reported in another dataset named “Ten-
sion_cm”. The database also contains additional variables
and information relevant to the infiltration data provided by
data owners or digitized from articles, as listed in Table 3,
and which is labeled ‘“Metadata”. Additional soil proper-
ties were determined by different standards; therefore, data
harmonization might be needed for some of those, espe-
cially in the case of water content at field capacity, pH, or
wet-aggregate stability. Further information on measurement
methods is available from references of the data. Since the
geometric mean diameter (dg) and standard deviation (Sg)
of soil particle sizes are rarely measured, both parameters
were computed using the following equations (Shirazi and

www.earth-syst-sci-data.net/10/1237/2018/
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Forest, 4 %

Pasture, 5 %

Analysis

Data
compilation

SWIG database

Boersma, 1984):

n
dg =exp(a), a=0.01 Zﬁ InD;, @

i=1

n
Sg=exp(b), b*=0.01) fIn’D; —d’, 5)
i=1

where f; is the percent of total soil mass having diameters
equal to or less than the arithmetic mean of interval limits
(D;) that define three main fractions (i) of clay, silt, and
sand with mean values of 0.001, 0.026, and 1.025 mm, re-
spectively. For the infiltration data, where the soil texture is
unknown, dg and Sy could not be calculated and the data
field in the database was left empty. The database also con-
tains the locations of the experimental sites in another dataset
named “Locations” that provides the approximate latitude
and longitude in decimal degree (dd.dd) format. Table 2 is
also provided in the SWIG database in two other worksheets
named “Ref. for digitized data” and “Ref. for data provided
by owner”.
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Table 1. References used to extract infiltration curves and metadata.
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Number Dataset Reference ‘ Number Dataset Reference
From To ‘ From To
1 295 317  Miller et al. (2005) 38 4612 — Wangetal. (2016)
2 318 322  Adindu Ruth et al. (2014) 39 4613 4615 Qianetal. (2014)
3 542 544  Alagnaet al. (2016) 40 4617 4619 Fanetal. (2013)
4 545 —  Angulo-Jaramillo et al. (2000) | 41 4620 —  Zhang et al. (2000)
5 546 548 Suetal. (2016) 42 4621 4623 Wang et al. (2015a)
6 549 550  Quadri et al. (1994) 43 4624 4633  Yang and Zhang (2011)
7 551 553  Qiand Liu (2014) 44 4634 4657 Wuetal. (2016)
8 554 558 Huang et al. (2015) 45 4658 4663 Maetal. (2017)
9 559 568  Al-Kayssi and Mustafa (2016) | 46 4664 4681 Thierfelder et al. (2003)
10 1421 1432  Bhardwaj and Singh (1992) 47 4682 4683 Commandeur et al. (1994)
11 1433 1435 Berglund et al. (1980) 48 4684 4686 Di Prima et al. (2016)
12 1436 1443  Wuetal. (2016) 49 4687 4688  Angulo-Jaramillo et al. (2000)
13 1444 1446 Chartier et al. (2011) 50 4689 4691 Machiwal et al. (2006)
14 1447 1456 Sihag et al. (2017) 51 4692 — Ayuetal. (2013)
15 1457 1460 Machiwal et al. (2006) 52 4693 4699 Reietal. (2016)
16 1461 1466 Igbadun et al. (2016) 53 4700 4702  Omuto et al. (2006)
17 1467 1469 Mohanty et al. (1994) 54 4703 4706 Névar and Synnott (2000)
18 1470 1472 Sauwa et al. (2013) 55 4707 —  Scotter et al. (1988)
19 1473 1476  Arshad et al. (2015) 56 4708 4720 Khan and Strosser (1998)
20 1477 1488 Bhawan (1997) 57 4721 4724  Lipiec et al. (2006)
21 1489 1495 Uloma et al. (2013) 58 4725 —  Suzuki (2013)
22 1496 —  Al-Azawi (1985) 59 4726 4728  Sukhanovskij et al. (2015)
23 1497 1499 Ogbe et al. (2011) 60 4729 4749  Al-Ghazal (2002)
24 1500 1507 Teague (2010) 61 4750 — Sorman et al. (1995)
25 4506 4515  Askari et al. (2008) 62 4751 4764 Bowyer-Bower (1993)
26 4516 —  Delage et al. (2016) 63 4765 4788 Medinski et al. (2009)
27 4517 4518  Ruprecht and Schofield (1993) | 64 4789 4792  Latorre et al. (2015)
28 4519 4520 Bertol et al. (2015) 65 4793 4795 Biro et al. (2010)
29 4521 4523  Naethetal. (1991) 66 4796 4799 Mohammed et al. (2007)
30 4524 4529 Huang et al. (2011) 67 4800 4815 Abdallah et al. (2016)
31 4530 4537  van der Kamp et al. (2003) 68 4816 4819 Murray and Buttle (2005)
32 4538 — Jackaet al. (2016) 69 4820 4831 Zhang et al. (2015)
33 4539 4568 Matula (2003) 70 4832 4837  Perkins and McDaniel (2005)
34 4569 4586 Casanova (1998) 71 4838 4841  Arriaga et al. (2010)
35 4587 4593  Holzapfel et al. (1988) 72 4842 4857  Thierfelder et al. (2017)
36 4594 4605 Wang et al. (2015b) 73 4858 4867  Thierfelder and Wall (2009)
37 4606 4611 Mao et al. (2016) 74 4868 4879  Abagale et al. (2012)

3 Results and discussion

3.1 Spatial and temporal data coverage

The SWIG database (Rahmati et al., 2018) consists of 5023
soil water infiltration measurements spread over nearly all
continents (Fig. 2). Data were derived from 54 countries (Ta-
ble 4). The largest number of data sources were provided by
scientists in Iran (n = 38), China (n = 23), and the USA
(n = 15), whereby one data source might contain several
water infiltration measurements. The SWIG database covers
measurements from 1976 to 2017. A sparse coverage was ob-
tained for the higher latitudes of the Northern Hemisphere
(above 60°) including Norway, Finland, Sweden, Iceland,

Earth Syst. Sci. Data, 10, 1237-1263, 2018

Greenland, and Russia. The lack of reports with infiltration
data from most countries of the former Soviet Union as well
as the Sahelian and Saharan countries is also notable, as well
as the small number of infiltration data from Australia. Fig-
ure 3 shows the number of samples by climatic zone (Rubel
et al., 2017; Kottek et al., 2006). The majority of the data
are from warm temperate, fully humid climate (49 %); arid
steppe climate and warm temperate climate with dry sum-
mer are the second and third most represented climate zones
with 22 and 12 %, respectively. Figures 4 and 5 show the
frequency of experimental sites, respectively, by the World
Reference Base (WRB) (IUSS, 2006) and USDA soil taxon-
omy systems (USDA, 2014) based on the SoilGrids dataset
(Hengl et al., 2017). Regarding the WRB classification sys-
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Table 2. References and correspondence for data supplied by data owners.
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Dataset

Number Contact person Email for contact Reference
From To
1 1 135 M. Rahmati mehdirmti @ gmail.com Rahmati (2017)
2 136 294 A. Farajnia farajnial 966 @yahoo.com Unpublished data
3 323 376 M. Shukla shuklamk @nmsu.edu Shukla et al. (2003, 2006)
4 377 426  S. H.R. Sadeghi sadeghi @modares.ac.ir Sadeghi et al. (2014, 20164, b, c, 2017a, b), Hazbavi and Sadeghi (2016),
Kheirfam et al. (2017a, b), Sharifi Moghaddam et al. (2014), Ghavimi Panah et al. (2017),
Kiani-Harchegani et al. (2017)
5 427 466 M. H. Mohammadi mhmohmad @ut.ac.ir Unpublished data
6 467 505  F. Meunier felicien.meunier @ gmail.com Unpublished data
7 506 541  N. Sephrnia n.sepehrnia@gmail.com Sepehrnia et al. (2016, 2017)
8 569 817 D. Moret-Ferndndez =~ david@eead.csic.es Unpublished data
9 818 940 M. Vafakhah vafakhah @modares.ac.ir Kavousi et al. (2013), Fakher Nikche et al. (2014)
10 941 1060  A. Cerda artemio.cerda@uv.es Unpublished data
11 1061 1079  J. Rodrigo-Comino  rodrigo-comino@uma.es Rodrigo-Comino et al. (2016, 2018)
12 1080 1112 H. Asadi ho.asadi@ut.ac.ir Nikghalpour et al. (2016)
13 1113 1119 K. Bohne klaus.bohne @uni-rostock.de Unpublished data
14 1120 1125 L.Mao leoam@126.com Mao et al. (2008b, 2016)
15 1126 1166 L. Lichner lichner@uh.savba.sk Dusek et al. (2013), Lichner et al. (2011, 2012, 2013)
16 1167 1210 M. V. Ottoni marta.ottoni @cprm.gov.br Oliveira (2005)
i; ii;é 41&35(5) R. Sandor sandor.rencsi@gmail.com Fodor et al. (2011), Séndor et al. (2015)
19 1508 1519  A. Stanley ajayistan@gmail.com Igbadun et al. (2016), Othman and Ajayi (2016)
20 1520 1521  A.R. Vaezi vaezi.alireza@gmail.com Unpublished data
21 1522 1536  A. Albalasmeh aalbalasmeh @just.edu.jo Gharaibeh et al. (2016)
22 1537 1578 D. Machiwal dmachiwal @rediffmail.com Machiwal et al. (2006, 2017), Ojha et al. (2013)
23 1579 1592 H. Emami hemami @um.ac.ir Fakouri et al. (2011a, b)
24 1593 1895 J. Mertens jan.mertens @engie.com Mertens et al. (2002, 2004, 2005)
25 1896 2115 D. Jacques diederik.jacques @sckcen.be Jacques (2000), Jacques et al. (2002)
26 2116 2139  J. Votrubova jana.votrubova@fsv.cvut.cz Votrubova et al. (2017)
27 2140 2143  J. Batlle-Aguilar jorbat1977 @hotmail.com Batlle-Aguilar et al. (2009)
28 2144 2179 R. A. Armindo rarmindo @ufpr.br Unpublished data
29 2180 2209 S. Werner steffen.werner @rub.de Unpublished data
30 2210 2255 S.Zacharias steffen.zacharias @ufz.de Unpublished data
31 2256 2281 S. Shutaro sshiraki @affrc.go.jp Unpublished data
32 2282 2304 T. Saito tadaomi @ muses.tottori-u.ac.jp Saito et al. (2016)
33 2305 2354 R. Taghizadeh-M. rh_taghizade @yahoo.com Unpublished data
34 2355 2356 W. G. Teixeira wenceslau.teixeira@embrapa.br Teixeira et al. (2014)
35 3644 3647 T e ’ ’
36 2357 2436 Y.Zhao yzhaosoils @ gmail.com Zhao et al. (2011)
37 2437 2475 A. A.Moosavi aamousavi@gmail.com Unpublished data
38 2476 2552 Y. A.Pachepsky yakov.pachepsky @ars.usda.gov Rawls et al. (1976)
39 2553 2643  A. Panagopoulos panagopoulosa@gmail.com Hatzigiannakis and Panoras (2011) and unpublished data
40 2644 2649 B. Clothier brent.clothier @plantandfood.co.nz Al Yamani et al. (2016)
i; §§(5)(7) g;ég C. Castellano ccastellanonavarro@gmail.com Unpublished data
43 2711 2756 F Becker fabian.becker @fu-berlin.de Unpublished data
44 2757 2765 1. Vogeler iris.vogeler @plantandfood.co.nz Vogeler et al. (2006), Cichota et al. (2013)
45 2766 2788 R. Morbidelli renato.morbidelli @unipg.it Morbidelli et al. (2017)
46 2789 2832  S. Giertz sgiertz@uni-bonn.de Giertz et al. (2005)
47 2833 2868 T. Vogel vogel@fsv.cvut.cz Vogel and Cislerova (1993)
48 2869 2948 W. Cornelis wim.cornelis@ugent.be Pulido Moncada et al. (2014), Rezaei et al. (2016a, b)
;1(9) §3gz ;3(8)3 Y. Coquet yves.coquet@univ-orleans.fr Coquet (1996), Coquet et al. (2005), Chalhoub et al. (2009)
51 3387 3506 B. Mohanty bmohanty @tamu.edu Dasgupta et al. (2006)
52 3598 3643 D.J. Reinert dalvan @ufsm.br Mallmann (2017)
53 3648 3657 M.R.Pahlavan Rad pahlavanrad @gmail.com Pahlavan-Rad (2017)
54 3658 3680 T. Saito tadaomi @muses.tottori-u.ac.jp Unpublished data
> e X.Li xyli@bnu.edu.cn Lietal. (2013), Hu et al. (2016)
57 3710 3745 Y. Bamutaze yazidhibamutaze @ gmail.com Unpublished data
;2 ;;gg igﬁ 1. Braud isabelle.braud @irstea.fr Gonzalez-Sosa et al. (2010), Braud (2015), Braud and Vandervaere (2015)
60 3834 3874 M. R. Mosaddeghi mosaddeghi @yahoo.com Unpublished data
61 3875 3906 S.B. Mousavi b_mosavi2000@yahoo.com Unpublished data
62 4012 4026 M. Pulido manpufer @hotmail.com Unpublished data
63 4027 4457 . ’ Unpublished data
4458 4475 P Roberts frapar@ceh.ac.uk Robinson et al. (2016, 2017)
64 4486 4496 T. Picciafuoco picciafuoco@hydro.tuwien.ac.at Morbidelli et al. (2017)
65 4880 4886 M. A. Liebig mark liebig@ars.usda.gov Liebig et al. (2004)
66 4887 4936  Y.Zeng y.zeng @utwente.nl Zhao et al. (2017, 2018)
67 4937 5018 L. Lassabatere laurent.lassabatere @entpe.fr Lassabatere et al. (2010), Yilmaz et al. (2010), Coutinho et al. (2016)
68 5019 5023 1. Eskandari eskandaril343 @yahoo.com Unpublished data
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Table 3. Description of the variables listed in the database.

Column Supplies Dimension

Code Dataset identifier with 4 digits from 0001 to 5023

Clay Mass of soil particles, < 0.002 mm %

Silt Mass of soil particles, > 0.002 and < 0.05 mm %

Sand Mass of soil particle, > 0.05 and <2 mm %

Texture 1: sand; 2: loamy sand; 3: sandy loam; 4: sandy clay loam; 5: sandy clay; 6: loam;
7: silt loam; 8: silt; 9: clay loam; 10: silty clay loam; 11: silty clay; 12: clay.

Gravel Mass of particles larger than 2 mm %

dg Geometric mean diameter mm

Sg Standard deviation of soil particle diameter

oC Soil organic carbon content %

Dy, Soil bulk density g em ™3

Dp Soil particle density g cm ™3

Kgat Soil saturated hydraulic conductivity cmh™1

Bsat Saturated volumetric soil water content cm3 em™3

6; Initial volumetric soil water content cm3 em—3

FC Soil water content at field capacity cm3 em ™3

PWP Soil water content at permanent wilting point (1500 kPa) em3 em ™3

Or Residual volumetric soil water content cm3 cm™3

WAS Wet-aggregate stability %

MWD Aggregates mean weight diameter mm

GMD Aggregates geometric mean diameter mm

EC Soil electrical conductivity dSm~!

pH Soil acidity -

Gypsum Soil gypsum content %

CCE Soil calcium carbonate equivalent %

CEC Soil cation exchange capacity Cmolc kg71

SAR Soil sodium adsorption ratio -

DiscRadius Applied disc radius (if any) mm

Instrument Applied instruments for infiltration measurement:

1: double ring; 2: single ring; 3: rainfall simulator; 4: Guelph permeameter; 5: disc infiltrometer;
6: micro-infiltrometer; 7: mini-infiltrometer; 8: Aardvark permeameter; 9: linear source method;
10: point source method; 11: hood infiltrometer; 12: tension infiltrometer; 13: BEST method.

Vegetation cover %

Land use Dominant land-use or land cover type of the experimental site
Rainfall intensity Simulated rain intensity mmh~!
Slope The mean slope of the soil surface %
Treatment Applied treatment in experimental site

Crust Yes: existence of crust. No: no crust layer.

Sand contact layer

Yes: sand contact layer is applied during infiltration measurement. No: no sand contact layer.

tem (Fig. 4), in total, 35 WRB reference soil subgroups are
included among experimental sites, where 55 % of the ex-
perimental sites comprised four subgroup classes of Hap-
lic Acrisols (8 %), Haplic Luvisols (11 %), Haplic Calcisols
(15 %), and Haplic Cambisols (21 %). A total of 29 soil sub-
orders classes of USDA soil taxonomy are included in this
study (Fig. 5) with Udalfs (9 %), Orthents (9 %), and Ustolls
(9 %). Thus, the wide spatial and temporal distribution of in-
filtration data from this database provides a comprehensive
view of the infiltration characteristics of many soils in the
world which can be used in future studies.

Earth Syst. Sci. Data, 10, 1237-1263, 2018

3.2 Analysis of the database using soil properties

Textural information (clay, silt, and sand content) is available
for 3842 out of 5023 collected infiltration curves (~ 76 %).
The infiltration measurements cover nearly all soil textu-
ral classes according to the USDA classification, except for
the sandy clay and silt textural class (Fig. 6), which makes
the SWIG database a valuable data source for comprehen-
sive studies. To complete the large dataset, the open-access
SWIG database might be amended with information regard-
ing those soils poorly or altogether unrepresented by the ex-
isting database, including those not usually considered by
infiltration studies, such as soils with extremely high stone

www.earth-syst-sci-data.net/10/1237/2018/
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Figure 2. Global distribution of infiltration measuring sites that were included in the database.
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Figure 3. Number of samples by Koppen—Geiger climatic zones (Rubel et al., 2017; Kottek et al., 2006).

content (Poesen, 2018). Loam, sandy loam, silty loam, and
clay loam contributed with 19, 18, 14, and 13 % (Table 5)
to the infiltration measurements, respectively. Table 5 shows
that infiltration measurements are almost equally distributed
among textures when these are categorized in three major
classes: course- (1092), medium- (1238), and fine- to moder-
ately fine-textured soils (1447). Table 6 reports on the soil
properties that are available in the SWIG database and it
gives some simple statistics such as mean, minimum, max-
imum, median, and coefficient of variation. Bulk density
(available for 66 % of infiltration measurements) and organic
carbon content (available for 62 % of infiltration measure-
ments) are two other soil properties besides texture that have
the highest frequency of availability. Saturated hydraulic
conductivity, initial soil water content, saturated soil water
content, calcium carbonate equivalent, electrical conductiv-
ity, and pH are available in 22 to 38 % of infiltration data.
The other soil properties have a frequency lower than 10 %.

www.earth-syst-sci-data.net/10/1237/2018/

3.3 Infiltration measurements in the SWIG database

Different instruments were used to measure soil water infil-
tration (Table 8). About 32 % (1595 out of 5023) of the mea-
surements were carried out using different types of ring in-
filtrometers. The most frequently used methods are the disc
infiltrometer methods (disc, mini-disc, and micro-disc, hood,
and tension infiltrometers), which have been used in about
51 % of the experiments. About 5% of the data were sub-
mitted to the database without specifying the measurement
method (251 infiltration tests) and around 12 % of the mea-
surements were carried out with other methods not listed
above (Table 7).

3.4 Land use classes represented in the SWIG
database

Land use is known to potentially impact soil structure and
then water infiltration into soils (e.g., llstedt et al., 2007; Wa-

Earth Syst. Sci. Data, 10, 1237-1263, 2018
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Table 4. Countries and the number of data sources () contributing
to the database.

Haplic Albeluvisols =
Umbric ._Albeluvisols -
Country n Country n Hyif)‘l‘lfvliz :jg;ggg}; C
Haplic Cryosols
Iran 38 Slovakia 2 Haplic Leptosols  fm
. . Lithic Leptosols =
China 23 South Africa 2 : Allic I;ilﬁsgls -
Haplic Nitisols (Rhodic) =
USA 15 Sudan 2 Haplic Solonetz jm
Brazil 9 Zambia 2 Calci}:gigxglzi:ﬁi: :
Spain 9 Argentina 1 Haplic Flug:g}‘;fg;:;:gg -
France 9 Australia 1 Gleyic Luvisols ~ jmm
Germany 8 Benin 1 Calcaric Regosols  jmm
Haplic Solonchaks s
India 8 Cameroon 1 e VeTos
Canada 7 Colombia 1 Haplic Chernozems — jummm
K ) . Haplic Phaeozems — jmmmm
United Kingdom 7 Indonesia 1 Calcic Vertisols s
Rendzic Leptosols
Hungary 6 Iraq 1 Haplic Podzols e
: . Haplic Vertisols
ngerla 6 J apan 1 Haplic Arenosols
Greece 5 Jordan 1 Haplic Cambisols (Calcaric) |
Haplic Fluvisols — e—
Belgium 4 Kenya 1 Haplic Ferralsols — —
& Y Haplic Kastanozems — j—
Italy 4 Lebanon 1 Haplic Lixisols  pm—
. . Haplic Acrisols — |———
Czech Republic 3 Malawi 1 Haplic Luvisols
Saudi Arabia 3 Mexico 1 HI;*;ﬁ‘C‘%g;lgizZ}z
Australia 2 Mozambique 1 " 5 - » 20 -
Austria 2 Myanmar 1 Frequency (%)
Chile 2 Netherland 1
Ghana 2 Poland 1 Figure 4. Frequency of WRB reference soil subgroups in experi-
q y group p
Morocco 2 Scotland 1 mental sites derived from SoilGrids (Hengl et al., 2017).
Namibia 2 Tanzania 1
New Zealand 2 Telangana 1
Pakistan 2 UAE 1
Russia 2 Uganda 1
Senegal 2 Zimbabwe 1
Orthels
Aquods
Xererts [
. . . Uderts s
Table 5. Number of soils in each soil USDA textural class for which Aquolls jumm
infiltration data are included in the database. Rendolls e
Udepts s
Aquents  jm—
Group Soil texture class  Availability Argids  m—
Usterts
Coarse-textured soils 1092 C;‘(‘:‘;‘[‘E —
T ]
Borolls
Sand 291 Aquepts  |——
Loamy sand 111 Orthods  |———
Sandy loam 690 Ulsjt‘ll":s‘ —
. . Udolls  j———
Medium-textured soils 1238 P
Ochrepts
Loam 716 Fluvents
Silt loam 522 L‘JJ;‘;’X
ults
Silt 0 Ustalfs
N Xerepts
Fine- to moderately 1476 Xerolls
fine-textured soil Udalfs
Orthents
Clay loam 514 Ustolls : : . : ;
0 2 4 6 8 10 12
Clay 352
. Frequency (%)
Silty clay loam 253
S'andy clay loam 226 Figure 5. Frequency of USDA soil suborders in experimental sites
Silty clay 131 derived from SoilGrids (Hengl et al., 2017).
Sandy clay 0
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Figure 6. Textural distribution of soils (c¢) and probability density functions of clay (a) and sand (b) particles (plotted on the USDA textural
triangle) for which infiltration data are included in the database. Dots are colored according to their corresponding land use. HCI: highly
clayey; SiCl: silty clay; Cl: clay; SiClLo: silty clay loam; ClLo: clay loam; SaCl: sandy clay; SaClLo: sandy clay loam; L: loam; Si: silty;
SiLo: silty loam; Sal.o: sandy loam; LoSa: loamy sand; and Sa: sandy.

Table 6. Soil properties, number of data entries in the database (out of 5023 soil water infiltration curves in total), and their statistical
description.

Soil properties Availability Fr (%) Mean Min Max Median CV (%)
Clay (%) 3842 76 24 0 80 20 64
Silt (%) 3842 76 36 0 82 37 52
Sand (%) 3842 76 41 1 100 38 63
Bulk density (g cm™3) 3295 66 1.32 0.14 2381 1.35 20
Organic carbon (%) 3102 62 3 0 88 1 200
Saturated hydraulic cond. (cmh™!) 1895 38 41 0 3004 3 426
Initial soil water content (cm3 cm ™) 1569 31017 0 063 0.14 68
Saturated soil water content (cm® cm™3) 1400 28 044 001 0.87 0.45 24
Carbonate calcium equivalent (%) 1399 28 14 0 56 8 101
Electrical conductivity (dS m 1 1113 22 25 0 358 1 249
pH 1081 22 7.4 4.7 8.6 7.6 12
Particle density (g cm™3) 438 9 2.52 1.73 297 2.56 9
Gypsum (%) 380 8 4 0 49 3 137
Cation exchange capacity (cmol¢ kgfl) 357 7 17 3 26 18 21
Wet-aggregate stability (%) 309 6 61 5 96 63 37
Residual soil water content (cm3 cm_3) 263 5 0.10 0.001  0.38 0.06 86
Mean weight diameter (mm) 258 5 1 0.10 2.75 1.0 54
Gravel (%) 243 5 18 0 92 15 84
Sodium adsorption ratio 156 3 5 0 89 1 351
Soil water content at FC (cm3 cm™3) 74 1 028 012 054 0.27 34
Soil water content at PWP (cm3 cm™3) 64 1 018 005 036 0.20 47
Geometric mean diameter (mm) 73 1 0.6 0.4 0.8 0.6 18

Fr: frequency (%), Min: minimum, Max: maximum, CV: coefficient of variation.
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Table 7. Instruments used to measure soil infiltration curves.

Instrument/method used Infiltration curves

Double ring 828

Ring Single ring 570
Beerkan (BEST) 197

Overall 1595
Disc 607

Mini-disc 1140

Infiltrometer Micro-disc 36
Hood 23

Tension 752

Overall 2558
P " Guelph 181
ermeameter Aardvark 50
Overall 231
Rainfall simulator 374
Linear source method 10
Point source method 4
Not reported 251
Sum 5023

Table 8. Number of infiltration curves with a given land use type.

Land use n  Land use n
Agriculture 2019  Vineyards 22
Grassland 821 Upland 11
Pasture 229  Pure sand 10
Forest 204  Brushwood 6
Garden 152 Road 5
Bare 99  Agro-pastoral 4
Urban soils 82 Park 3
Savannah 41  Salt-marsh soil 3
Abandoned farms 39  Afforestation 2
Idle 32 Campus 2
Shrub 30 Residential 2
Available 3818  Unknown 1205

terloo et al., 2007). Consequently, we collected information
on the type of land use at all experimental sites where avail-
able. In general, the type of land use was reported in 3818 out
of 5023 infiltration curves (~ 76 %) and this information is
reported in the Metadata dataset. For simplicity, we grouped
all reported land use types into 22 major groups (Table 8).
A frequency analysis showed that agricultural land use, i.e.,
cropped land, irrigated land, dryland, and fallow land, is the
most frequently reported land use in the database with about
53 % (2019 out of 3818) of all land uses. With 22 %, grass-
lands are the second most frequently represented land use
type. Pasture with 6 % and forest with 5 % are ranked as the
third- and fourth-largest reported land use types. The 18 re-
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maining land use types all together cover only 545 experi-
mental sites (less than 15 %).

3.5 Estimating infiltration parameters from infiltration
measurements

In order to predict infiltration parameters from infiltration
measurements, we classified the SWIG database infiltration
curves in two groups: (i) infiltration curves that were ob-
tained under the assumption of 1-D infiltration and (ii) infil-
tration curves that were obtained under 3-D flow conditions.
We fitted the three-parameter infiltration equation of Philip
(Kutilek and Krejca, 1987), Eq. (6), to the 1-D experimen-
tal data and the simplified form of Haverkamp et al. (1994),
Eq. (7), to the 3-D experimental data:

Il-D:Sl%"‘Alt‘l'AZt%, (6)

2-B yS?
I3-D—S\/;+|: 3 Ksat+RD(95_9i)]t- @)
We reduced the number of parameters in Eq. (6) by defining
A1 = 0.33 x Ko (Philip, 1957) and A» = A where A was as-
sumed to be a constant. In Eq. (7), we put 8 = 0.6 (Angulo-
Jaramillo et al., 2000) and the second term between brackets
on the right-hand side was assumed to be a constant. There-
fore, we simplified the equations as follows:

Iip =St +0.33Ket+ A1, (8)
L = Svi+047Keut + At. 9)

In our analysis, we assumed that double-ring infiltrometer
measurements result in 1-D infiltration conditions, while the
different types of disc infiltration and single-ring infiltrom-
eter measurements lead to 3-D flow conditions that can be
captured by Eq. (9). As 1-D or 3-D infiltration conditions are
not guaranteed for measurements made with rainfall simula-
tors, Guelph permeameters, Aardvark permeameters, linear
and point source methods, and hood infiltrometer measure-
ments, these infiltration curves were not considered in our
first analysis. By excluding these methods, 596 infiltration
curves were excluded from the fitting to Egs. (8) and (9).
In addition, 251 infiltration curves were also excluded from
the fitting to Eqgs. (8) and (9) as no indication was available
on the measurement method used. In total, 4178 infiltration
curves were included in our analysis, of which 828 infiltra-
tion curves reflected 1-D and 3350 were considered as the
results of 3-D infiltration. As no sufficient information was
available on the properties of the sand contact layer, we did
not correct 3-D infiltration measurements. Finally, the se-
lected infiltration curves were fitted to Eq. (8) or (9) using
the 1sqnonlin command in Matlab™.

The fitting results of Eq. (8) to the single infiltrometer data
are shown in Table 9. R? values were higher than 0.9 in 97 %
of the cases and higher than 0.99 in 77 % of the cases. Fitting
Eq. (9) to the 3-D infiltration curves data, R? values higher
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than 0.9 and 0.99 were obtained in 94 and 68 % of the cases,
respectively. The statistics for the fitting process as well as
the fitted parameters of two mentioned models are reported
in the SWIG database in an additional dataset labeled “Statis-
tics”. For infiltration curves excluded from the analysis, an
empty cell is reported.

The average values of estimated Ky and sorptivity (),
using Eq. (8) or (9) as well as measured K, for different
soil texture classes extracted from the current database, are
reported in Table 10. The measured values of Ky were ob-
tained by other means by the contributors and tabulated in the
SWIG database. More detailed information of how K, was
calculated in individual cases can be found in the references
linked to those data points. Comparison between estimated
(Ksates) and measured (Kga.;m) values of Ky (Table 10) re-
veals that there is reasonably good agreement between mea-
surements and estimation, except for loamy sand (with mean
Kates =62cmh™! vs. Kgm =25cmh™!), sandy loam
(with mean Kgyres = 32cm h=! vs. Kggem = 41 cm h_l), silt
loam (with mean Kgyes = 27 cmh™! vs. Kggm = 3cmh™1),
and silty clay (with mean Kgy.es = 26 cm h! vs. Keypm =
45cmh™!) textural classes. However, the only significant
difference between measured and estimated K,¢ values was
found for the silt loam textural class (Table 10) applying an
independent ¢ test.

We also compared our estimated K, values from the in-
filtration measurements from the SWIG database with K,
values from databases that have been published in the litera-
ture (Table 11). The validity of our estimated Kgy values is
confirmed by comparing the order of magnitude of the dif-
ference between these values, and those tabulated in previ-
ous studies, for the various different soil classes. Some of
these databases like that of Clapp and Hornberger (1978) and
Cosby et al. (1984) have been used to parameterize land sur-
face models. Most of the K, values in the listed databases
have been obtained from laboratory-scale measurements of-
ten performed on disturbed soil samples. In most of the re-
ported databases Ky is controlled by texture, with the high-
est mean values obtained for the coarse-textured soils and
the lowest mean values for the fine-textured soils. This is
not the case for the K, values obtained from the SWIG
database. Clayey soils have a mean value that is similar to the
coarser textured soils. This may be partly explained by the
fact that the measurements collected in the SWIG database
are obtained from field measurements on undisturbed soils.
It was observed that the standard deviation of K, in the
SWIG database is typically larger than the standard devia-
tions obtained from the databases in the literature. This indi-
cates that texture is apparently not the most important con-
trol on K, values. However, one would also pose that much
of the lack of correlation between soil texture and predicted
K, from the SWIG database is related to the lack of soil
structural information, such as macro porosity quantification
or other possible soil attributes. Indeed, many of the datasets
presented in our paper on saturated and near-saturated flow
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can be used to infer the state of the soil’s structure, namely
its macroporosity, by using the slope of the near-saturated
conductivity curve, via Philip’s “flow-weighted mean pore-
size” analysis. White and Sully (1987) have discussed this
in a great detail. Zhang et al. (2015) is another example
of where tension infiltrometers can be used to describe the
temporal dynamics of the macroporosity which character-
izes soil structure. This could inspire researchers to collect
such information when conducting additional soil infiltration
measurements and include this in the database in the future.
This finding indicates that present parameterization in cur-
rent land surface models, which are mainly based on texture,
may severely underestimate the variability of K. In addi-
tion, it shows that also mean values are not dominantly con-
trolled by textural properties. Other land surface properties
such as land use and crusting may, in fact, be much more
important.

3.6 Exploring the SWIG database using principal
component analysis

In order to demonstrate the potential of the SWIG database
for analyzing infiltration data and for developing pedotrans-
fer functions, principal component analysis (PCA) was per-
formed and biplots were generated to show both the obser-
vations and the original variables in the principal component
space (Gabriel, 1971).

In a biplot, positively correlated variables are closely
aligned with each other and the larger the arrows the stronger
the correlation. Arrows that are aligned in opposite directions
are negatively correlated with each other and the magnitude
of the arrows is again a measure of the strength of the corre-
lation. Arrows that are aligned 90° to each other show typi-
cally no correlation. Figures 7 and 8 show the results of two
PCAs. The first PCA (Fig. 7) shows the relationship between
soil textural properties, S and Ky, based on 3267 infiltration
measurements. The first two principal components explain
74.5 % of the variability in the data. Figure 7 shows a pos-
itive correlation between Ky, and S (0.527) and the largest
values for both variables are found in clay soils. Clay content
appears to only be weakly correlated with K¢, and S as is
also shown by the correlation coefficients of 0.112 and 0.025,
respectively. Figure 8 shows the biplot of soil textural prop-
erties with K, S, organic carbon content, and bulk density
in the principal component space — based on 1910 infiltra-
tion measurements. The first two principal components still
explain 55 % of the variability. Neither S nor K, showed
appreciable correlations with available soil properties. Only
Kt and S are correlated (arrows are aligned but small) with
a value of 0.29. Organic carbon and bulk density show a neg-
ative correlation with a calculated value equal to —0.51. It
also shows that, for example, the sandy clay loam textural
class (yellow dots) shows a wide spread in organic matter
content and bulk densities. These analyses show that the ex-
amined basic soil properties do not contain enough informa-
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Table 9. Accuracy analysis of empirical models fitted to experimental data of infiltration.

n‘ R? ‘

RMSE (cm)

Infiltration type R%* > 090 R?> 0.9
‘ Mean Min Max SD ‘ Mean Min Max SD

1-D 828 | 0.985 0.529 1 0.049 | 0.900 13x107% 6930 3.31 801 640

3-D 3350 | 0.975 0.032 1 0.066 | 0449 55x 10712 9895 295 3136 2276

All 4178 ‘ 0.977 0.032 1 0.063 ‘ 0538 5.5x10712 9895 3.03 3937 2916

SD: standard deviation.

Table 10. Estimated or measured average values of infiltration parameters for different textural classes extracted from the current database.

Independent ¢ test
Texture class Estimated by Eq. (8) or (9) Measured between measured
and estimated Kt
2 S (cmh~93) \ Kgat (cmh™1) \ 2 Kgar (cmh™1) | df value
Mean Median SD ‘ Mean Median SD ‘ Mean Median SD ‘
Sand 291 2.3 0.26 4.3 422 15 134.5 229 43.6 24 149 | 518 0.10°
Loamy sand 92 10.6 57 175 61.4 10 173.2 63 24.6 8.2 72 | 153 1.59P
Sandy loam 500 9.2 295 157 32 3.1 94.5 424 41.2 5.7 166 | 922 1.05°
Silt loam 409 94 1.5 19.1 | 265 17 617 | 165 29 096 5.1 | 572 4.90¢
Loam 583 79 24 129 | 78 028 267 | 270 49 118 137 | 851 1.69°
Sandy clay loam 185 5.9 21 86 74 1.4 12.8 84 5.4 2.24 6.9 | 267 1350
Silty clay loam 250 3.2 064 125| 106 1.7 24.1 64 123 242 632 | 312 0320
Clay loam 467 6.8 21 136 8.3 2.3 20 | 166 7.6 297 213 | 631 038°
Sandy clay - - - - - - - - - - - - -
Silty clay 121 7.7 22 134 26.2 7.8 61.5 54 44.8 6.97 882 | 173 1.59b
Clay 333 14.6 1.7 395 | 3543 1.3 1268.5 79 148.8 294 4584 | 410 1.42b
Silt - - - - - - - - - - -1 - -
Total 4179 8.5 2.6 182 46 1.8 374.8 | 1895 41 3.4 174 - -
2 The number soils included in calculation. Pns: insignificant; ©**: significant at 1 % probability level. SD: standard deviation.
tion to properly estimate K, and S. However, the SWIG
database provides additional information such as land use, o5k @ sud 9 Silt loam
initial water content, and slope that might prove to be good : 2:’,23;‘1;1‘;‘3 Q ;11:: 1?2;?103111
predictors. A further analysis in this respect is however be- oar 9 Sandy clay loam 9 A
yond the scope of this paper. More importantly, the present Foum )
analysis in combination with the results provided in Table 11 “l
shows that a texture-dominated derivation of K, values, as ——eSand

implemented in most land surface models, does not provide
adequate means to estimate Kgy.
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Figure 7. The relationships between clay, silt, sand contents and
estimated hydraulic parameters (S and Kgat).
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osr @ Loamy sand [ Clay loam
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Figure 8. The relationships between clay, silt, sand contents, Dy,
and OC and estimated hydraulic parameters (S and Kgyt).

3.7 Potential error and uncertainty in the SWIG
database

Similar to any other databases, the data presented in the
SWIG database may be subject to different error sources and
uncertainties. These include (1) transcription errors that oc-
curred when implementing the measurement data into the
EXCEL spreadsheets, (2) inaccuracy and uncertainties in de-
termining related soil properties such as textural properties,
(3) violation of the underlying assumption when performing
the experiments, and (4) uncertainty (variability) in estimated
soil hydraulic properties due to the different measurement
methods. Unfortunately, none of these errors or uncertainty
sources are under the control of the SWIG database authors,
and quantification of these sources is often difficult, since the
required information is often lacking. The uncertainty and
variability related to the applied measurement techniques for
estimated soil hydraulic properties may be assessed as infor-
mation on the applied techniques is available; however, some
of these methods may only have been used in few cases, mak-
ing a statistical analysis difficult.

With respect to the transcription error, a strong effort has
been made to double-check data transcription to prevent or
at least to minimize any probable error of this nature. Val-
ues of soil properties such as textural composition are known
to vary strongly between different laboratories and measure-
ment methods. This is especially true for the finer textural
classes like clay. Unfortunately, information on the measure-
ment used to determine soil properties is mostly lacking or
insufficient to assess the magnitude of errors or biases. Inter-
nationally, there are a number of standard methods used to
measure soil properties and several methods may have been
applied to measure the reported soil properties. In this regard,
no conversion has been made and only raw data are reported
in the database. However, we have supplied the references
for all data (where available) that can be used to ascertain

Earth Syst. Sci. Data, 10, 1237-1263, 2018

which methodologies were used, if so desired. Although sup-
plying such information for each soil property may facilitate
the use of the database, it would have required considerable
additional work that could not be performed at this stage of
development. Such additions could form the basis of a sec-
ond version of the database that any readers should feel free
to commence.

The uncertainty with respect to the effect of measurement
techniques on quantifying the infiltration process itself may
be analyzed from the SWIG database as it provides informa-
tion on the type of measurement technique used. This analy-
sis is again beyond the scope of this paper. Potential error and
uncertainty sources with respect to the use of different mea-
surements are discussed in the Supplement. The uncertainty
of estimated soil hydraulic properties from infiltration mea-
surements may be strongly controlled by the person perform-
ing the experiment but may also be due the different mea-
surement windows of the methods in terms of measurement
volume. The SWIG database provides information to quan-
tify uncertainties introduced by difference in measurement
volume and this analysis will be closely related to the assess-
ment of the representative elementary volume, REV (see, for
example, the work of Pachepsky on the scaling of saturated
hydraulic conductivity).

Careful interpretation of the data, with respect to the de-
tails of the experimental and soil conditions, is also required
when utilizing the SWIG database. For instance, the cases
of soils coded 1211-1420 may at first seem odd, as they
display very low infiltration rates for soils of a very high
(> 95 %) sand content; however, these unusual findings are
explained by the soils being recorded as displaying water re-
pellant characteristics. Another example is estimated values
of Ky from clayey soils showing high values of Ky (e.g.,
soils coded 3746 to 3833 in the SWIG database). The Ky
values for these soils were obtained using the single-ring in-
filtrometer method (Gonzalez-Sosa et al., 2010; Braud, 2015;
Braud and Vandervaere, 2015) and were conducted in the
field under ponded conditions, with vegetation cut but roots
left in place. Macropores could have been activated, leading
to an infiltration rate much higher than expected for clayey
soils. There were also instances of very high values being
obtained for forested land uses, and sometimes for grassland,
which is probably explained by the visible cracks in the soil
surface present in those cases

3.8 Research potentials of the SWIG database

We envision that the SWIG database offers a unique opportu-
nity and information source to (1) evaluate infiltration meth-
ods and to assess their value in deriving soil hydraulic prop-
erties, (2) test different models and concepts for point-scale
and grid-scale infiltration processes, (3) develop pedotrans-
fer functions to estimate soil hydraulic properties such as the
Mualem—van Genuchten parameters, (4) identify controls on
infiltration processes, (5) validate global predictions of in-
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filtration from land surface models, (6) study more complex
processes like preferential flow in soils, and (7) highlight the
state-of-the-art understanding of the relationships between
infiltration and several soil surface characteristics; for exam-
ple, the SWIG database has already contributed to the scope
of Morbidelli et al. (2018) to advance the knowledge of infil-
tration over sloping surfaces.

We are confident that the SWIG database is just a first
step in collecting and archiving infiltration data and we ex-
pect that increasing amounts of data will become avail-
able in the near future. These data will be archived in
the SWIG database and thus made available to the world-
wide research community. In this regard, we are interested
in receiving existing or newly measured infiltration curves
and for this purpose the corresponding author will serve
as point of contact or data can be made available through
the International Soil Modeling Consortium, ISMC (https:
/Isoil-modeling.org/, last access: 1 July 2018), for further
archiving in the SWIG database.

4 Data availability

All collected data and related soil characteristics are provided
online in *.xIsx and *.csv formats for reference and are avail-
able at https://doi.org/10.1594/PANGAEA.885492 (Rahmati
etal., 2018). We add a disclaimer that the database is for pub-
lic domain use only and can be copied freely by referencing
it.

5 Conclusion

We have collected 5023 infiltration curves from field exper-
iments from all over the world covering a broad range of
soils, land uses, and climate regions. We estimated saturated
hydraulic conductivity, Ky, and sorptivity from more than
3000 infiltration curves and compared estimated Kgy values
with values from different databases published in the liter-
ature. We showed that contrary to the assumption made in
many land surface and global climate models, texture is not
the main controlling factor for K. In addition, the variabil-
ity of Ky derived from these field measurements is consid-
erably larger than reported in the literature. The collected in-
filtration curves were archived as the SWIG database on the
PANGAEA platform and are therefore available worldwide.
The data are structured into *.xlsx and *.csv files and include
metadata information for further use. Data analysis revealed
that infiltration curves are lacking for clayey, sandy-textured,
and stony soils. Also infiltration curve data are lacking for
the northern and permafrost regions. Here, additional efforts
are needed to collect more data as these regions are partic-
ularly sensitive to climate change, which will clearly affect
the soil hydrology.
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supplement.
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