000851509 001__ 851509 000851509 005__ 20210129234926.0 000851509 0247_ $$2Handle$$a2128/19673 000851509 037__ $$aFZJ-2018-05135 000851509 0881_ $$aJuel-4413 000851509 088__ $$2JUEL$$aJuel-4413 000851509 1001_ $$0P:(DE-Juel1)159532$$aWeger, Ann-Cathrin$$b0$$eCorresponding author$$ufzj 000851509 245__ $$aNumerische Berechnung von elastischen Streuproblemen in 2D$$f- 2018-07-23 000851509 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2018 000851509 300__ $$aVIII, 118 p. 000851509 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook 000851509 3367_ $$2DataCite$$aOutput Types/Supervised Student Publication 000851509 3367_ $$02$$2EndNote$$aThesis 000851509 3367_ $$2BibTeX$$aMASTERSTHESIS 000851509 3367_ $$2DRIVER$$amasterThesis 000851509 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$mreport 000851509 3367_ $$0PUB:(DE-HGF)19$$2PUB:(DE-HGF)$$aMaster Thesis$$bmaster$$mmaster$$s1536741383_17486 000851509 3367_ $$2ORCID$$aSUPERVISED_STUDENT_PUBLICATION 000851509 4900_ $$aBerichte des Forschungszentrums Jülich$$v4413 000851509 502__ $$aMasterarbeit, FH Aachen Campus Jülich, 2018$$bMasterarbeit$$cFH Aachen Campus Jülich$$d2018 000851509 520__ $$aThe master thesis deals with the numerical calculation of elastic scattering problemsin 2D using the boundary integral equation method. Elastic scattering problems, for example, play an important role in nondestructive material testing because they are useful for studying the internal structure of an object. The field of elastic waves scattered on the object can be used to draw conclusions about the condition of the object. In this thesis the boundary integral equation method with the resulting boundary integral equations and operators is described. Afterwards the discretization of the operators is explained and the integral algorithm of Beyn is introduced. The main part of the thesis is the calculation of the boundary integral operators for the static and dynamic case with special treatment of the diagonal element and their singularities. In this context, a singularity subtraction is performed and various integrals are determined as $\textit{Cauchy principle value}$ or $\textit{Hadamard finite part integral}$. The operators implemented in MATLAB are tested for various points in the considered domain and examined for convergence. In addition, the operators are used to determine the eigenvalues of elastic scattering problems or transmission problems using Beyn’s integral algorithm. 000851509 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000851509 8564_ $$uhttps://juser.fz-juelich.de/record/851509/files/J%C3%BCl_4413_Weger.pdf$$yOpenAccess 000851509 8564_ $$uhttps://juser.fz-juelich.de/record/851509/files/J%C3%BCl_4413_Weger.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000851509 909CO $$ooai:juser.fz-juelich.de:851509$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000851509 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000851509 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000851509 9141_ $$y2018 000851509 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159532$$aForschungszentrum Jülich$$b0$$kFZJ 000851509 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000851509 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000851509 980__ $$amaster 000851509 980__ $$aVDB 000851509 980__ $$aUNRESTRICTED 000851509 980__ $$abook 000851509 980__ $$areport 000851509 980__ $$aI:(DE-Juel1)JSC-20090406 000851509 9801_ $$aFullTexts