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¢.8., screening clouds), and polar-

prism is oriented along the y axis, then the holo-
ideal imaging system can be expressed in the form

e interference distance (which depends on the biprism
d s is the spacing of the interference fringes in a vacuum
blogram recorded with the specimen removed from the field
OV). Eq. (2) describes two twin images of the object wave-

e object (specimen) is located at x + d/2, then the corre-
g object wave zp(x + % y) is overlapped with the reference

; zp(x - % )) In order to retrieve the amplitude and phase of the
ct wave, the reference wave should ideally be equal to unity, or it
ould be known.

When long-range electrostatic fields originate from the specimen, as
shown in Fig. 1, the reference wave may be perturbed. Analysis of the
hologram then results in the reconstruction of a fictitious specimen,
which can be described by the wavefunction [8,9]

P(x, y) = alx, y)eXp[iw(x + g,y) - iqo(x - % y)]

e

am,

Ftion where a(x, y) is the amplitude of the object wave, d is a two-dimen-

e mi- sional “interference distance” vector that connects the two virtual

El array sources created by the biprism, and qo(x + %I y) and qo(x - g, y) are the
bace am- phases of the object and reference waves, respectively. The difference
between these two phase distributions, rather than the true object

fields, the phase, is then recovered. The influence of such a perturbed reference
5] wave (PRW) on measurements of charge density and electric field is

3)

Fig. 1. Schematic diagram of the experimental setup for off-axis
electron holography (left) and photograph of an FEI Titan trans-
mission electron microscope in Forschungszentrum Jiilich (right).
Corresponding components are labelled using the same colours.
From top to bottom are: an illuminating plane or spherical elec-
tron wave I, an electrically-biased needle-shaped specimen Sp, the
electron microscope objective lens OL, an electron biprism EB, and
a recorded off-axis electron hologram Hol.
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eedle-shaped W specimen covered by an amorphous layer: (a)
holography. (b) Charge density distribution calculated from the

hh the vacuum side of the specimen edge, while an effective band of

is of charge are present at the interface between the needle and the
Laplacian of the phase across regions A (green) and B (red) marked in
applied to a median-filtered version of the phase. See text for details.

O, Pproi (X, »n=/[ p(x - % ¥, z)dz is the projected charge den-

and Qc is the total charge present in region C. The volume over

ch Gauss’ law is evaluated, as discussed above, is an infinite cylinder
ong the z axis), of which C is a cross-section.

Furthermore, the Laplacian of the phase can be calculated directly

from the reconstructed complex wavefunction using the expression [25]

Vip = v )2]
¥ ®

By making use of the divergence theorem, Eq. (7) can equivalently
be written in the form [17]

—_F%o e n(x
Q== $ Vot y D10 y O, ©
where V is a two-dimensional gradient operator, 0C denotes an in-
tegration loop (coinciding with the boundary of the integration region
Cin Eq. (7)), lis a curvilinear coordinate along the contour and n is the
outward normal to the contour.

2.2. Practical considerations

Parameters that can affect charge density measurements include the
MIP contribution to the phase, the spatial resolution (i.e., the digital
undersampling) of the recorded phase image, its signal-to-noise ratio
(SNR), strong diffraction conditions (which can affect the measurement
of the MIP contribution to the phase), electron-beam-induced specimen
charging effects and the influence of sample imperfections (e.g., da-
mage, contamination, and oxidation). Several of these considerations
are now discussed.

2.2.1. Mean inner potential

The MIP of the specimen affects charge density measurements from
electron optical phase images because it is associated with the presence
of effective local dipole layers at the specimen surface [42]. Its influ-
ence is illustrated in Fig. 2. Fig. 2a shows part of a phase image of the
end of an unbiased W needle recorded using off-axis electron holo-
graphy. The needle is surrounded at its end by a layer of amorphous
oxide and/or contamination. Fig. 2b shows the projected charge density
distribution calculated directly from the Laplacian of the recorded
phase image using Eq. (7). Evaluation of the Laplacian of the phase
invariably results in a noisy image. In addition, Fig. 2b reveals that local
variations in specimen thickness and MIP are visible in the form of
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ratio
harge measurement is determined by factors that
e original hologram, the sampling density of the
the size of the integration region in the loop integral
experimental phase image (neglecting scattering ab-
specimen) is considered to be a superposition of a noise-
kse image and random normally-distributed noise with
d standard deviation (SD) 8¢, then the Laplacian of the
Je can also be regarded as a noise-free charge distribution
. Here, we show how the SD of the measured charge density
on &0 is related to the SD of the phase.

iscrete Laplacian is a one-step matrix algebra operator
aps each pixel in a phase image @(i, j) onto the value
L) +el-1,)+@Gj+1)+ G j— 1) — 4¢G, j). If this
ation is applied to a noisy phase image that has zero mean and
S¢(i, j), then the result is another noisy image, which is
so normally distributed and has zero mean (because
+1+4+1+1—-4=0), but which has a standard deviation that is
/20 times larger than the SD of the original image. This description is
valid when each noise pixel is uncorrelated with its neighbours
and when the SDs can be added in quadrature, such that
12 4+ 12 + 12 + 12 + 42 = 20. The relationship between the SDs of

the phase and the charge density is given by the expression

6o = \/%&@ = \/E@.

G p? p’ (10)
where p is the pixel size, and we define 6q = é—"E’éqo as the charge noise.
For reference, d¢p = 118 mrad corresponds to §q = le at 300kV.
Since experimental values of phase noise SD are typically well below
100 mrad, the achievement of single electron sensitivity in charge
measurement appears to be relatively straightforward.

Eq. (10) is derived on the assumption of uncorrelated/white noise in
the phase image. However, this situation does not strictly hold for
Fourier-transform-based hologram reconstruction, as noise correlations
are automatically introduced when a side-band is masked using an
aperture. (A general description of the introduction of correlation in the
reconstruction of holograms can be found elsewhere [44].) Such a mask
may be “soft” (e.g., Gaussian, Hann, or Butterworth), or “hard” (e.g., top
hat). Soft apertures are most commonly used because they are more
efficient than hard apertures at suppressing phase noise without

Fig. 3. Charge density distributions
calculated by applying a loop integral
(evaluated using Eq. (9)) to differences
between phase images recorded with
and without an electrical bias voltage
applied to the W needle shown in
Fig. 2. The phase image recorded with a
bias voltage applied to the needle was
deliberately misaligned by +5 and —5
pixels along the x axis in (a) and (b),
respectively, with respect to the phase
image recorded without an applied
bias, before evaluating their difference.
(c) Cumulative charge profiles obtained
30 a5 by integrating the signal across the re-
Distance /nm gions marked in (a) and (b).
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to the transfer of noise

bn. On the contrary, since

g differences between pixel

g the transferred noise var-
cancel out. When a discrete

E, the noise transfer factor of 20

noise in vacuum in a phase image

s electron hologram was found to be

d deviation). By using hologram series

g 20 successive phase images, the phase

ad, in agreement with the expected /20

I noise. The noise in each hologram is un-

the series and the averaging procedure does

ons. When a discrete Laplacian is applied to a
um in the phase image, for example to the region

e noise transfer factor is in general lower than /20,
th the strong correlations that are visible in the

simulated correlation matrices. (c) Experimental noise image,
grams. (d) Corresponding experimental correlation matrix. Right:

ental correlation matrix shown in Fig. 4d. The relevant corre-

coefficients can be extracted from the experimental correlation

x shown in Fig. 4d, resulting in values of ¢; = 0.859, c¢;; = 0.746

co = 0.532. (c;; was estimated by applying second-order poly-

ial interpolation to cg =1 and czm these values, the noise

ansfer factor drops from /20 = 4.47 to +/0.613 = 0.783. As a result, the

KD of the charge density calculated using Eq. (10) drops from 0.64 e/p>

to 0.11 e/p?, in agreement with the experimental value of the charge
density noise being 0.10 e/p>.

Integration of the measured charge density distribution reduces
noise, although it does not bring it back to the value that it had in the
original phase image, both because the integration region is usually
smaller than the FOV and as a result of noise correlations. (Even if the
phase noise were uncorrelated, the charge density noise becomes
correlated as a result of the use of the discrete Laplacian operator.)
The right half of Fig. 4 illustrates how the SD of the measured charge
8Q is related to o and d¢. We consider a simple square 7 X 7 matrix

with noisy pixels 8¢ representing the region of the phase image
where we attempt charge measurement. The discrete Laplacian of this
matrix, which is represented by a standard 3 x 3 kernel, is an
edge-padded 5 X 5 matrix (the evaluation of boundary pixels is ne-
glected for simplicity), in which each pixel value L; is a linear

combination of the original pixel values written above
(e.8,Lag = 834 + 835 + SPaz + P45 — 4044, etc.). Summing these
25 pixels gives another linear combination of pixel values. Isolating
the coefficients of each pixel contributing to the sum and assembling
them into a matrix yields what is shown in Fig. 4 at the end of the
process diagram, which coincides with the discrete representation of
the loop integral of the gradient (represented by the (— 1, 1) kernel)
of the original image over the boundary of the chosen region. In ad-
dition to providing visual verification of the equivalence of the two
methods for measuring Q, it implies that §Q is also identical. Counting
the number of pixels that contribute to the measurement of Q and
summing them in quadrature (for uncorrelated phase noise) provides
the following relationship between the measurement uncertainty and
the phase noise SD:

50 = Jin o = [y,
where n>1 is the number of pixels on one side of the square in-
tegration loop and L is the total length of the loop. The noise transfer
factor in the case of correlated phase noise becomes /8(1 — ¢))n,
where the only relevant correlations are those between adjacent pixels
in the Laplacian. Since these correlations are also the strongest, c; can
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cal model-dependent reconstruction

Inalytical model-dependent approach for determining the
density from an electron optical phase image relies on having
to a model that can be used to solve the Laplacian equation. A
fe-shaped specimen has often been modelled as a line charge in
t of a grounded conducting plane. The justification for using such a
pdel is that equipotential surfaces around a line of constant charge
ensity take the form of ellipsoids, which are in turn similar to the outer
boundary of a needle-shaped specimen, which is often conducting and
expected to be an equipotential. The charge density in such a model can
be adjusted until a best match is found between experimental and si-
mulated phase images in vacuum outside the specimen. The influence
of the grounded conducting plane on the electrostatic potential dis-
tribution and its electron optical phase can be included by using image
charge methods [22]. In the presence of an external field, a linear
charge density that increases along the length of the needle can be used
in the model instead of a constant charge density [23,46]. An analytical
model for the electron optical phase [23] then takes the form
plx,y) = % 4Ly + 4xy arctan y-L _ 4xy arctan y+L
0

x2+ (y — L)?
x2+ (y + L)? (12)

- (I +x*=y3)n

In the present example, the shape of the needle was fitted to an
ellipsoid of major semi-axis a = 45 um and minor semi-axis b = 0.6 pm.
The value of K in Eq. (12) was found from a best fit to the phase image.
Fig. 8a shows a simulated contoured phase image corresponding to the
best-fitting result, with K = 35 e/um?. The electric field strength E in-
duced by the counter-electrode and the base on which the field emitter
sits can be calculated [23,46] and is approximately 0.4 MV/m, which is
comparable to the electric field generated when 50 V is applied between
two plates with a separation of 50 um. Fig. 8b shows a stream plot of the
electric field lines in the z = 0 plane for the best-fitting parameters. The
maximum electric field strength at the apex Eg., is approximately
3.6 GV/m. The ratio Egp./E corresponds to a field enhancement factor
of 9000.

This field emitter was also transferred to a dedicated ultra-high-
vacuum chamber to measure its field emission properties [48]. The
electric field at the apex determined from a measured I-V curve was
2.2 GV/m, which is slightly lower than that determined here. However,
we did not detect a field emission current during our experiment, most
likely due to the poorer vacuum level in the TEM column.

4. Numerical iterative model-based reconstruction

The accuracy of the analytical model-dependent approach described
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olography, corresponding to: (a) the MIP contribution alone; (b) the MIP
b) and (¢), i.e., the effect of the electrical bias voltage alone. The outline of
g phase contour maps, displayed in the form of the cosine of the phase. The

(c)
—— Model-independent approach
O Mode-based iterative reconstruction

Cumulative Charges (electrons)
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Distance (nm)

cribed in the text to measure the charge density distribution in a LaBg field emitter that has an electrical
density distribution determined directly from the Laplacian of the phase; (b) Charge density distribution
iation of 5 pixels (4.2nm). (a) and (b) are both shown in units of e/pixel; (c) Cumulative charge profiles

e line) and model-based iterative reconstruction (red squares; see Section 4.4.6). The integration region is

\ A\ Fig. 8. Demonstration of the application of the analytical
J )\\ model-dependent approach described in the text to a LaBg
\ \\\ ‘ field emitter that was electrically biased at 50V. (a)

Contoured phase image that provided a best fit in the vacuum
region around the specimen to the experimental phase images
shown in Fig. 6b and c. The phase contour spacing is 2w ra-
dians. (b) Streamlines showing a section through the electric
field lines in the z = 0 plane calculated from the best-fitting
parameters. The colour scale indicates the natural logarithm
of the electric field strength. The shadow of the needle is in-
dicated by the white region.
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where the matrix F is split into a projection matrix P and a convolution
matrix M, x is the charge state vector (i.e, a(x, vy, z) in vectorised form)
and y describes the calculated phase images in vectorised form. An
efficient implementation of the projection step can be achieved by
employing sparse matrix calculations, especially in the case of projec-
tions along z axis. In order to optimise the second step, the convolution
kernels (see Eq. (17)) can be pre-calculated in real space and fast
convolutions can be used in Fourier space [49,51].

4.3. Regularisator

Regularisation provides a way of making use of a priori information
in the model-based inverse algorithm. The following regularisators
were used here: the application of a mask to indicate the region that can
contain charges (i.e., the location of the specimen); the application of a
confidence mask to define trustworthy regions in the experimental
phase; and the enforcement of physical or mathematical constraints by
adding a Tikhonov regularisator [52] in the cost function.

The total electrostatic potential energy W of all of the charges can be
written in the form [53]

l J

"~ 87e I — xjl” 19)

where g;, g; and r;, r; are the magnitudes and positions of the i, jth
charges, respectively. The charges interact with each other through the
Coulomb force, turning a linear term (Eq. (15)) into a non-linear one.
For an ideal metal, in which charges are located only on the specimen
surface, Eq. (19) can be reduced to the form

€
w= g2,
2

(20)

where w is the energy density and o is the surface charge density.
Minimisation of the total potential energy is a physical constraint that
can be used to restrict the reconstruction of the charges. In order to
enforce this constraint, we use Tikhonov regularisation of Oth order,
which corresponds to the use of a scaled identity matrix in the reg-
ularisation term. The regularisation term is then exactly Eq. (15), i.e., a
Euclidean norm. Although, in general, charges do not need to be
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4.4.1. Mask

A mask can be used to specify a priori information about the spe-
cimen geometry, i.e., the positions at which charges can be located. It
can therefore lead to a significant reduction in the number of unknowns
and to an improvement in the quality of the reconstruction. Although
masking could be implemented as a term in the cost function, here we
apply a mask by excluding these regions from the charge state vector x,
which corresponds to assuming a charge of zero in these regions. The
algorithm then does not fit the regions outside the mask. Differences
between input and reconstructed projected charge density distributions
obtained from the phase image shown in Fig. 12, both with and without
using a mask, are shown in Fig. 13. When a mask is not used, the error
in the reconstructed charge is approximately 10%, while that in the
phase is more than 150 urad (not shown). There are also ripple-like
artefacts in the reconstructed charge density. In contrast, when a mask
(marked by the dashed circle in Fig. 12) is used, the error in the re-
constructed charge falls to below 1%, while that in the phase falls to
approximately 15prad (not shown). In addition, the ripple-like arte-
facts are absent.

4.4.2. Gaussian noise and regularisation strength

The noise in an experimental phase image can depend on the
camera used and on the acquisition method (e.g, single vs multiple
hologram acquisition). In the presence of noise, reconstruction without
using a regularisator is found to result in a charge density distribution
that can deviate greatly from the input. A Oth order Tikhonov reg-
ularisator was therefore used here. As discussed in Section 4.1, the
regularisation strength, which is defined by the value of A, determines
the ratio between the residual norm vector (the first term on the right of
Eq. (14)) and the regularisation term. If A — 0, then the regularisation
term vanishes and the cost function only relies on the residual norm
vector, resulting in high frequency noise in the reconstructed charge
density distribution. In contrast, if A— < then the cost function favours
the regularisation term and the reconstructed result diverges from the
experimental data. A good choice for the regularisation parameter
corresponds to an optimal balance between compliance with the
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nd smoothness of the
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reconstructed charge density distribution shown in Fig. 15. At the edge
of the mask, the reconstructed charge density deviates by 50% from the
input distribution, while elsewhere the error is below 5%. The corre-
sponding phase error is below 1%. Fig. 16 shows the influence on the
reconstructed charge density distribution of using regularisation para-
meters of 0.5 and 50. For A = 50, the charge distribution is too smooth,
whereas for A = 0.5 it is too noisy. It should be noted that the algorithm
is designed to be insensitive to the presence of an arbitrary phase offset
and an arbitrary phase ramp. Care in the interpretation of the result is
therefore required if a real phase ramp may be present across the FOV.

4.4.3. Confidence mask

Experimental phase images can contain artefacts that originate from
the specimen (e.g, unwanted effects of dynamical diffraction, con-
tamination or electron-beam-induced charging), from the microscope
(e.g., image distortions, or instabilities), from the detector (e.g., un-
dersampling or dead pixels), or from image analysis (e.g, imperfect

phase [rad]

phase image (left) and corresponding 8-times-amplified contour map (right) for the charge density distribution shown in Fig. 11. The phase
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fensity distribution is then determined only from the phase outside the
charged sphere and can be seen to deviate significantly from the input
charge density distribution. Interestingly, although the charge density
distribution cannot be reconstructed reliably, the retrieved phase out-
side the charged sphere is consistent with the input phase, suggesting
that the projected electric field can also be retrieved correctly outside
the sphere. This is not surprising, since the algorithm always delivers a
unique solution (in a mathematical sense) for a given type and strength
of regularisation. However, without information about the phase in the
interior of the object, reconstruction of the charge density inside it
cannot be unique. For example, for a metallic ellipsoid the charge on
the surface produces the same electric field distribution outside the
object as a line of constant charge density located on its axis [22]. This
statement is also consistent with the general property of a homogeneous
Laplace equation that the values in the domain volume depend solely
on the values or their derivatives on the domain boundary. The possi-
bility of being able to reconstruct the potential and electric field outside
a specimen without needing to make use of phase information inside it
has significant implications for applications such as the characterisation
of electrically biased needle-shaped specimens for atom probe tomo-
graphy, for which the electric field outside the specimen rather than the
charge density inside it may be the parameter of primary interest for
providing experimental input for the simulation of ion trajectories.
Nevertheless, whereas techniques based on differential phase contrast
can be used to record the projected electric field directly, an argument
in favour of reconstructing the charge density from an off-axis electron
hologram before then using it to infer the projected electric field is that
the charge density is localised within the specimen, rather than ex-
tending outside the FOV.

4.4.4. Charges outside the field of view

As a result of the limited lateral extent of a phase image, it is often
not possible to include all of the specimen or all of the phase change
associated with the charge density distribution inside the FOV. This
problem is particularly apparent when examining electrically-biased
needle-shaped specimens, such as atom probe tomography needles or
field emitters. It is illustrated for a uniform shell-like charge density
distribution in Fig. 18. The phase of the entire shell (not shown) is
calculated using the charge density shown in Fig. 18a. However, only
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ase image shown in Fig. 12 with Gaussian noise of 0.05 rad added, for a regularisation parameter A of 5, showing the

ribution and its deviation from the input charge density (upper row, shown in units of e/pixel), the reconstructed phase

iddle row), and the charge profile across the centre of the image (x = 0) extracted from the reconstructed (red) and input
Plifference (blue) (lower row).

age was used for the reconstruction. The introduce a distribution of additional charge density around the edge of
Be density distribution, which is shown in the image, in order to take into account the influence of unknown
fntly from the input charge density, as the charges outside the FOV. They are only used during the reconstruction
arges are present only in the masked region, and are discarded when displaying the final reconstructed charge
e the FOV also contribute to the phase. Since the density inside the part of the specimen that is within the FOV. In the
not include any boundary conditions, with the present example, Fig. 18c shows that the reconstructed result is almost
charges, the presence of charges outside the FOV consistent with the original input charge density when 8 buffer pixels
by making use of additional buffer pixels, which are are used at the border of the image.
e edge of the FOV. These buffer pixels can be used to
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y distributions starting from the phase image shown in Fig. 12 for regularisation parameters A of
el shows the charge profiles across the centre for the input charge distribution (black) and the
ion parameters: 0.5 (green), 5 (red), and 50 (blue).
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bint charge within the FOV. In

e tail of the electric field arising

acuum reference wave, the mea-

s the projected potential of the po-

metrical with respect to its position.

the vacuum reference wave originates

c field of the point charge, which decays

the solid red line in Fig. 19. The measured

ce between the projected potential of the

and the projected potential in the vacuum re-
he red dashed line in Fig. 19 represents the po-
reference wave region, which has to be added to
the FOV with a negative sign to take the PRW into
ilting phase image is asymmetrical with respect to the

position of the charge. The red dashed line can be described as origi-
nating from a negative (virtual) point charge located on the other side
of the biprism, as shown by a solid blue line in Fig. 19. The influence of
the PRW can therefore be described by a region of virtual charges of
opposite sign (mirror charges) that are located on the opposite side of
the biprism at a distance that is equal to the interference distance. It can
be treated in the same way as any other source of charge located outside
the FOV, as described in Section 4.4.4, or alternatively by using a
modified kernel that includes the PRW effect.

4.4.6. Reconstruction from an experimental phase image

A phase image recorded from a LaBg needle-shaped specimen that
was electrically biased in situ in the TEM using an applied voltage of
50V (Fig. 6¢), from which the MIP contribution to the phase had been
removed using the procedure describe above, was used for re-
construction of the charge density. The positions of image point charges
in the forward model were calculated by assuming a distance between
the needle and the contour-electrode of approximately 6pum. The
sampling density was 7 nm/pixel. A 4-pixel-wide buffer was also de-
fined around the border of the image, in order to compensate for the
presence of charges at unknown positions outside the FOV, as well as
the presence of the PRW, as described in Sections 4.4.4 and 4.4.5. Oth
order Tikhonov regularisation was used. An optimal value for the
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original experimental image (see Fig. 20c and d), this discrepancy is at a
level of below 1% and may result from a slight error in the selection of
the mask, or from the finite sampling of the phase at the narrow apex of
the needle. If the reconstructed charge density distribution obtained
using the MBIR algorithm (Fig. 20) is compared with that obtained from
the Laplacian of the phase (Fig. 7), it is clear that the noise in the fitted
charge distribution is greatly reduced, as a result of the use of a priori
knowledge (in particular, the mask and the regularisation parameter)
when performing the reconstruction. Nevertheless, it should be noted
that the result depends strongly on the values of several input para-
meters, which should be chosen carefully when applying the MBIR
approach.

4.5. Reconstruction of charge density in three dimensions

Three-dimensional charge density distributions can in principle be

Fig. 18. Illustration of the reconstruc-
tion of only part of a charge density
distribution to highlight the influence
of the presence of charges outside the
FOV. (a) shows a uniform shell-like
charge distribution, which was used to
generate a phase image. (b) and (c)
show reconstructed charge distribu-
tions generated from only the left half
of the phase image. (b) was generated
without using any boundary pixels. (c)
was generated by allowing additional
charge density to be fitted in an addi-
tional boundary region that had a
width of 8 pixels just outside the right
edge of the image. The boundary pixels
were then removed to display the final
fitted charge density within the original
FOV. All of the images are shown in
units of e/pixel.




oo rad was added to each

s. The tilt angle range was chosen to be + 50°
s range can be achieved experimentally. The an-
osen to be 10°, resulting in an input dataset to the
11 phase images in total. Three different three-di-
ere used: the shell, the outer surface of the sphere
e-dimensional volume. Oth order Tikhonov regular-
, as described in Section 4.3. The regularisation para-
t to be 100 for all three cases.
nd 22 show two-dimensional slices and line profiles
reconstructed three-dimensional charge density. As ex-
use of a shell mask, which defines the true positions of the
livers the best results. If only the outer surface of the sphere
as a mask, then the algorithm retrieves the key feature of the
Histribution (the homogeneous surface charge) correctly. How-
e reconstructed charge is smoothed slightly into the volume of
Phere and exhibits small oscillations next to the shell region. If the
three-dimensional volume is used, then the basic features of the
hrge density are reproduced (see Fig. 22), but additional spreading of
e charge and high frequency artefacts are present across the FOV.
JAlthough further tests are required to optimise the use of the MBIR
approach for three-dimensional charge density reconstruction, the re-
sults presented here are highly encouraging.

5. Summary and conclusions

Three different approaches have been described for the measure-
ment of charge density distributions in nanoscale materials from elec-
tron optical phase images recorded using off-axis electron holography:

phase [rad]

Fig. 20. Reconstruction of the pro-
jected charge density distribution from
an experimental phase image of a
needle-shaped LaBg specimen that was
electrically biased in situ in the TEM at
50V, from which the MIP contribution
to the phase had been subtracted
(Fig. 6¢), using Oth order Tikhonov
regularisation. (a) Application of L-
curve analysis to determine that the
optimal value of the regularisation
parameter A is 10. (b) Reconstructed
projected charge density distribution,
shown in units of e/pixel. (c) Phase
image determined from the re-
constructed projected charge density.
(d) Difference between the re-
constructed phase shown in (c) and the
experimental phase image shown in
Fig. 6¢c. Note the different intensity
scales in (c) and (d).
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Experimental measurements is

br the charge density and phase
Ecimen geometry and requires the
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(Section 3.1) is the most direct and

ring the projected charge density dis-

Je and is insensitive to the presence of a

Ind charges outside the field of view. How-

Pe density can be noisy (since the approach

of derivatives). In the MBIR approach (Section
approximates each charged voxel as a homo-
phere and a mirror charge. It can incorporate a
rough the use of masks, regularisation parameters

al constraints, resulting in lower noise but requiring

o 1s set to be 100 for all three
cases. Different three-dimensional
masks were used to define the possible
locations of the reconstructed charge:
the shell that defines the original
charge distribution (upper row); the
outer surface of the sphere (middle
row); the full three-dimensional re-
construction volume (lower row). The
left column shows the reconstructed
charge distribution in the central slice
(z = 0), while the right column shows
the corresponding projected charge
density distribution.

care in the selection of parameters to avoid the introduction of arte-
facts. A further advantage is that boundary pixel regions can be used to
take account of the presence of charges outside the field of view and the
perturbed reference wave (Section 4.4.4). Artefacts can be tackled by
assigning zero confidence to regions of phase images that contain un-
trustworthy information (Section 4.4.3). It is important to note that
different charge distributions inside an object can result in the same
electrostatic potential and phase distribution outside it.

The three approaches have been tested on an experimental phase
image of an electrically biased needle-shaped LaBg specimen and have
been shown to provide consistent results for the charge density. The
phase shift of a line charge is used as a simple model in the analytical
model-dependent approach. Projected charge density distributions re-
trieved using the model-independent approach (Fig. 7a and b) and the
MBIR approach (Fig. 4.4.6) show that most of the charge is located
close to the surface of the needle, with charge accumulation at its apex.
The result obtained using the MBIR approach has much less noise than
that obtained using the model-independent approach. Three-dimen-
sional charge density distributions can in principle be reconstructed
using each approach, either by applying a standard backprojection-
based tomographic reconstruction algorithm to projected charge
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