000851660 001__ 851660 000851660 005__ 20210129234955.0 000851660 0247_ $$2doi$$a10.1002/aelm.201800062 000851660 0247_ $$2WOS$$aWOS:000437828700005 000851660 037__ $$aFZJ-2018-05210 000851660 082__ $$a621.3 000851660 1001_ $$0P:(DE-Juel1)165703$$aFunck, Carsten$$b0$$eCorresponding author 000851660 245__ $$aA Theoretical and Experimental View on the Temperature Dependence of the Electronic Conduction through a Schottky Barrier in a Resistively Switching SrTiO 3 -Based Memory Cell 000851660 260__ $$aChichester$$bWiley$$c2018 000851660 3367_ $$2DRIVER$$aarticle 000851660 3367_ $$2DataCite$$aOutput Types/Journal article 000851660 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552576135_30252 000851660 3367_ $$2BibTeX$$aARTICLE 000851660 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000851660 3367_ $$00$$2EndNote$$aJournal Article 000851660 520__ $$aMetal–semiconductor Schottky interfaces are of high interest in many fields of semiconductor physics. One type of electronic devices based on Schottky contacts are resistive switching cells. The mostly applied analytical models are insufficient to describe all Schottky contact systems, which further impedes finding the correct conduction mechanism and may lead to physical misunderstandings. In this work, the electron transport properties of the resistively switching SrTiO3/Pt interface model system are investigated using a combination of experimental and theoretical methods. Temperature‐dependent I–V curves are measured and analyzed using an analytical approach, an atomistic approach based on density functional theory and the nonequilibrium Green's function formalism, and a continuum modeling approach. The findings suggest two different conduction mechanisms. Instead of a current transport over the barrier, as in the case of Schottky emission theory, the simulations show that tunneling through the Schottky barrier dominates. In the low voltage range, only thermally excited electrons can tunnel into the conduction band. For higher voltages, the SrTiO3 conduction band and the Fermi level at the injecting Pt‐electrode are aligned, allowing also electrons at the Fermi‐edge to tunnel. Consequently, the temperature dependence changes, leading to a crossing of the I–V curves at different temperatures. 000851660 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0 000851660 536__ $$0G:(DE-Juel1)jpgi70_20120501$$aModelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM) (jpgi70_20120501)$$cjpgi70_20120501$$fModelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM)$$x1 000851660 588__ $$aDataset connected to CrossRef 000851660 7001_ $$0P:(DE-HGF)0$$aMarchewka, Astrid$$b1 000851660 7001_ $$0P:(DE-Juel1)159254$$aBäumer, Christoph$$b2 000851660 7001_ $$0P:(DE-HGF)0$$aSchmidt, Peter C.$$b3 000851660 7001_ $$0P:(DE-HGF)0$$aMüller, Phillip$$b4 000851660 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b5 000851660 7001_ $$0P:(DE-Juel1)167535$$aMartin, Manfred$$b6 000851660 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b7 000851660 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b8 000851660 773__ $$0PERI:(DE-600)2810904-1$$a10.1002/aelm.201800062$$gVol. 4, no. 7, p. 1800062 -$$n7$$p1800062 -$$tAdvanced electronic materials$$v4$$x2199-160X$$y2018 000851660 8564_ $$uhttps://juser.fz-juelich.de/record/851660/files/Funck_et_al-2018-Advanced_Electronic_Materials.pdf$$yRestricted 000851660 8564_ $$uhttps://juser.fz-juelich.de/record/851660/files/Funck_et_al-2018-Advanced_Electronic_Materials.pdf?subformat=pdfa$$xpdfa$$yRestricted 000851660 909CO $$ooai:juser.fz-juelich.de:851660$$pVDB 000851660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165703$$aForschungszentrum Jülich$$b0$$kFZJ 000851660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b2$$kFZJ 000851660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b5$$kFZJ 000851660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b7$$kFZJ 000851660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b8$$kFZJ 000851660 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000851660 9141_ $$y2018 000851660 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ELECTRON MATER : 2015 000851660 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000851660 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000851660 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000851660 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000851660 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000851660 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0 000851660 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000851660 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2 000851660 980__ $$ajournal 000851660 980__ $$aVDB 000851660 980__ $$aI:(DE-Juel1)PGI-7-20110106 000851660 980__ $$aI:(DE-82)080009_20140620 000851660 980__ $$aI:(DE-82)080012_20140620 000851660 980__ $$aUNRESTRICTED