001     851660
005     20210129234955.0
024 7 _ |a 10.1002/aelm.201800062
|2 doi
024 7 _ |a WOS:000437828700005
|2 WOS
037 _ _ |a FZJ-2018-05210
082 _ _ |a 621.3
100 1 _ |a Funck, Carsten
|0 P:(DE-Juel1)165703
|b 0
|e Corresponding author
245 _ _ |a A Theoretical and Experimental View on the Temperature Dependence of the Electronic Conduction through a Schottky Barrier in a Resistively Switching SrTiO 3 -Based Memory Cell
260 _ _ |a Chichester
|c 2018
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552576135_30252
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Metal–semiconductor Schottky interfaces are of high interest in many fields of semiconductor physics. One type of electronic devices based on Schottky contacts are resistive switching cells. The mostly applied analytical models are insufficient to describe all Schottky contact systems, which further impedes finding the correct conduction mechanism and may lead to physical misunderstandings. In this work, the electron transport properties of the resistively switching SrTiO3/Pt interface model system are investigated using a combination of experimental and theoretical methods. Temperature‐dependent I–V curves are measured and analyzed using an analytical approach, an atomistic approach based on density functional theory and the nonequilibrium Green's function formalism, and a continuum modeling approach. The findings suggest two different conduction mechanisms. Instead of a current transport over the barrier, as in the case of Schottky emission theory, the simulations show that tunneling through the Schottky barrier dominates. In the low voltage range, only thermally excited electrons can tunnel into the conduction band. For higher voltages, the SrTiO3 conduction band and the Fermi level at the injecting Pt‐electrode are aligned, allowing also electrons at the Fermi‐edge to tunnel. Consequently, the temperature dependence changes, leading to a crossing of the I–V curves at different temperatures.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
536 _ _ |a Modelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM) (jpgi70_20120501)
|0 G:(DE-Juel1)jpgi70_20120501
|c jpgi70_20120501
|f Modelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM)
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Marchewka, Astrid
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bäumer, Christoph
|0 P:(DE-Juel1)159254
|b 2
700 1 _ |a Schmidt, Peter C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Müller, Phillip
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 5
700 1 _ |a Martin, Manfred
|0 P:(DE-Juel1)167535
|b 6
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 7
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 8
773 _ _ |a 10.1002/aelm.201800062
|g Vol. 4, no. 7, p. 1800062 -
|0 PERI:(DE-600)2810904-1
|n 7
|p 1800062 -
|t Advanced electronic materials
|v 4
|y 2018
|x 2199-160X
856 4 _ |u https://juser.fz-juelich.de/record/851660/files/Funck_et_al-2018-Advanced_Electronic_Materials.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851660/files/Funck_et_al-2018-Advanced_Electronic_Materials.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:851660
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165703
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159254
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21