000851661 001__ 851661 000851661 005__ 20210129234955.0 000851661 0247_ $$2doi$$a10.1063/1.5024504 000851661 0247_ $$2ISSN$$a0003-6951 000851661 0247_ $$2ISSN$$a1077-3118 000851661 0247_ $$2Handle$$a2128/19663 000851661 0247_ $$2WOS$$aWOS:000433140900034 000851661 037__ $$aFZJ-2018-05211 000851661 082__ $$a530 000851661 1001_ $$00000-0002-3285-2027$$aRosário, Carlos M. M.$$b0$$eCorresponding author 000851661 245__ $$aCorrelation between the transport mechanisms in conductive filaments inside Ta 2 O 5 -based resistive switching devices and in substoichiometric TaO x thin films 000851661 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2018 000851661 3367_ $$2DRIVER$$aarticle 000851661 3367_ $$2DataCite$$aOutput Types/Journal article 000851661 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547050340_3111 000851661 3367_ $$2BibTeX$$aARTICLE 000851661 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000851661 3367_ $$00$$2EndNote$$aJournal Article 000851661 520__ $$aConductive filaments play a key role in redox-based resistive random access memory (ReRAM) devices based on the valence change mechanism, where the change of the resistance is ascribed to the modulation of the oxygen content in a local region of these conductive filaments. However, a deep understanding of the filaments' composition and structure is still a matter of debate. We approached the problem by comparing the electronic transport, at temperatures from 300 K down to 2 K, in the filaments and in TaOx films exhibiting a substoichiometric oxygen content. The filaments were created in Ta (15 nm)/Ta2O5 (5 nm)/Pt crossbar ReRAM structures. In the TaOx thin films with various oxygen contents, the in-plane transport was studied. There is a close similarity between the electrical properties of the conductive filaments in the ReRAM devices and of the TaOx films with x ∼ 1, evidencing also no dimensionality difference for the electrical transport. More specifically, for both systems there are two different conduction processes: one in the higher temperature range (from 50 K up to ∼300 K), where the conductivity follows a T⎯⎯⎯√ dependence, and one at lower temperatures (<50 K), where the conductivity follows the exp(−1/T⎯⎯⎯√) dependence. This suggests a strong similarity between the material composition and structure of the filaments and those of the substoichiometric TaOx films. We also discuss the temperature dependence of the conductivity in the framework of possible transport mechanisms, mainly of those normally observed for granular metals. 000851661 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0 000851661 588__ $$aDataset connected to CrossRef 000851661 7001_ $$0P:(DE-HGF)0$$aThöner, Bo$$b1 000851661 7001_ $$00000-0003-0118-6321$$aSchönhals, Alexander$$b2 000851661 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b3 000851661 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b4 000851661 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b5 000851661 7001_ $$00000-0002-9420-8130$$aSobolev, Nikolai A.$$b6 000851661 7001_ $$00000-0002-6766-8553$$aWouters, Dirk J.$$b7 000851661 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.5024504$$gVol. 112, no. 21, p. 213504 -$$n21$$p213504 -$$tApplied physics letters$$v112$$x1077-3118$$y2018 000851661 8564_ $$uhttps://juser.fz-juelich.de/record/851661/files/1.5024504.pdf$$yPublished on 2018-05-21. Available in OpenAccess from 2019-05-21. 000851661 8564_ $$uhttps://juser.fz-juelich.de/record/851661/files/1.5024504.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-05-21. Available in OpenAccess from 2019-05-21. 000851661 909CO $$ooai:juser.fz-juelich.de:851661$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000851661 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000851661 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000851661 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000851661 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2015 000851661 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000851661 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000851661 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000851661 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000851661 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000851661 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000851661 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000851661 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000851661 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000851661 9141_ $$y2018 000851661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b3$$kFZJ 000851661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b4$$kFZJ 000851661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b5$$kFZJ 000851661 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000851661 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0 000851661 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000851661 980__ $$ajournal 000851661 980__ $$aVDB 000851661 980__ $$aI:(DE-Juel1)PGI-7-20110106 000851661 980__ $$aI:(DE-82)080009_20140620 000851661 980__ $$aUNRESTRICTED 000851661 9801_ $$aFullTexts