000851661 001__ 851661
000851661 005__ 20210129234955.0
000851661 0247_ $$2doi$$a10.1063/1.5024504
000851661 0247_ $$2ISSN$$a0003-6951
000851661 0247_ $$2ISSN$$a1077-3118
000851661 0247_ $$2Handle$$a2128/19663
000851661 0247_ $$2WOS$$aWOS:000433140900034
000851661 037__ $$aFZJ-2018-05211
000851661 082__ $$a530
000851661 1001_ $$00000-0002-3285-2027$$aRosário, Carlos M. M.$$b0$$eCorresponding author
000851661 245__ $$aCorrelation between the transport mechanisms in conductive filaments inside Ta 2 O 5 -based resistive switching devices and in substoichiometric TaO x thin films
000851661 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2018
000851661 3367_ $$2DRIVER$$aarticle
000851661 3367_ $$2DataCite$$aOutput Types/Journal article
000851661 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547050340_3111
000851661 3367_ $$2BibTeX$$aARTICLE
000851661 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851661 3367_ $$00$$2EndNote$$aJournal Article
000851661 520__ $$aConductive filaments play a key role in redox-based resistive random access memory (ReRAM) devices based on the valence change mechanism, where the change of the resistance is ascribed to the modulation of the oxygen content in a local region of these conductive filaments. However, a deep understanding of the filaments' composition and structure is still a matter of debate. We approached the problem by comparing the electronic transport, at temperatures from 300 K down to 2 K, in the filaments and in TaOx films exhibiting a substoichiometric oxygen content. The filaments were created in Ta (15 nm)/Ta2O5 (5 nm)/Pt crossbar ReRAM structures. In the TaOx thin films with various oxygen contents, the in-plane transport was studied. There is a close similarity between the electrical properties of the conductive filaments in the ReRAM devices and of the TaOx films with x ∼ 1, evidencing also no dimensionality difference for the electrical transport. More specifically, for both systems there are two different conduction processes: one in the higher temperature range (from 50 K up to ∼300 K), where the conductivity follows a T⎯⎯⎯√  dependence, and one at lower temperatures (<50 K), where the conductivity follows the exp(−1/T⎯⎯⎯√)  dependence. This suggests a strong similarity between the material composition and structure of the filaments and those of the substoichiometric TaOx films. We also discuss the temperature dependence of the conductivity in the framework of possible transport mechanisms, mainly of those normally observed for granular metals.
000851661 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000851661 588__ $$aDataset connected to CrossRef
000851661 7001_ $$0P:(DE-HGF)0$$aThöner, Bo$$b1
000851661 7001_ $$00000-0003-0118-6321$$aSchönhals, Alexander$$b2
000851661 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b3
000851661 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b4
000851661 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b5
000851661 7001_ $$00000-0002-9420-8130$$aSobolev, Nikolai A.$$b6
000851661 7001_ $$00000-0002-6766-8553$$aWouters, Dirk J.$$b7
000851661 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.5024504$$gVol. 112, no. 21, p. 213504 -$$n21$$p213504 -$$tApplied physics letters$$v112$$x1077-3118$$y2018
000851661 8564_ $$uhttps://juser.fz-juelich.de/record/851661/files/1.5024504.pdf$$yPublished on 2018-05-21. Available in OpenAccess from 2019-05-21.
000851661 8564_ $$uhttps://juser.fz-juelich.de/record/851661/files/1.5024504.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-05-21. Available in OpenAccess from 2019-05-21.
000851661 909CO $$ooai:juser.fz-juelich.de:851661$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851661 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851661 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851661 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000851661 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2015
000851661 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851661 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851661 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851661 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851661 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851661 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851661 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851661 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000851661 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851661 9141_ $$y2018
000851661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b3$$kFZJ
000851661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b4$$kFZJ
000851661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b5$$kFZJ
000851661 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000851661 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000851661 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000851661 980__ $$ajournal
000851661 980__ $$aVDB
000851661 980__ $$aI:(DE-Juel1)PGI-7-20110106
000851661 980__ $$aI:(DE-82)080009_20140620
000851661 980__ $$aUNRESTRICTED
000851661 9801_ $$aFullTexts