000851662 001__ 851662
000851662 005__ 20210129234955.0
000851662 0247_ $$2doi$$a10.1063/1.5026063
000851662 0247_ $$2Handle$$a2128/19664
000851662 0247_ $$2WOS$$aWOS:000431141500006
000851662 037__ $$aFZJ-2018-05212
000851662 082__ $$a620
000851662 1001_ $$00000-0001-6236-7391$$aKindsmüller, A.$$b0$$eCorresponding author
000851662 245__ $$aValence change detection in memristive oxide based heterostructure cells by hard X-ray photoelectron emission spectroscopy
000851662 260__ $$aMelville, NY$$bAIP Publ.$$c2018
000851662 3367_ $$2DRIVER$$aarticle
000851662 3367_ $$2DataCite$$aOutput Types/Journal article
000851662 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547050550_3108
000851662 3367_ $$2BibTeX$$aARTICLE
000851662 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851662 3367_ $$00$$2EndNote$$aJournal Article
000851662 520__ $$aThe switching mechanism of valence change resistive memory devices is widely accepted to be an ionic movement of oxygen vacancies resulting in a valence change of the metal cations. However, direct experimental proofs of valence changes in memristive devices are scarce. In this work, we have employed hard X-ray photoelectron emission microscopy (PEEM) to probe local valence changes in Pt/ZrOx/Ta memristive devices. The use of hard X-ray radiation increases the information depth, thus providing chemical information from buried layers. By extracting X-ray photoelectron spectra from different locations in the PEEM images, we show that zirconia in the active device area is reduced compared to a neighbouring region, confirming the valence change in the ZrOx film during electroforming. Furthermore, we succeeded in measuring the Ta 4f spectrum for two different resistance states on the same device. In both states, as well as outside the device region, the Ta electrode is composed of different suboxides without any metallic contribution, hinting to the formation of TaOx during the deposition of the Ta thin film. We observed a reduction of the Ta oxidation state in the low resistance state with respect to the high resistive state. This observation is contradictory to the established model, as the internal redistribution of oxygen between ZrOx and the Ta electrode during switching would lead to an oxidation of the Ta layer in the low resistance state. Instead, we have to conclude that the Ta electrode takes an active part in the switching process in our devices and that oxygen is released and reincorporated in the ZrOx/TaOx bilayer during switching. This is confirmed by the degradation of the high resistance state during endurance measurements under vacuum.
000851662 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000851662 588__ $$aDataset connected to CrossRef
000851662 7001_ $$0P:(DE-Juel1)159492$$aSchmitz, C.$$b1
000851662 7001_ $$0P:(DE-Juel1)131035$$aWiemann, C.$$b2
000851662 7001_ $$0P:(DE-Juel1)145428$$aSkaja, K.$$b3
000851662 7001_ $$00000-0002-6766-8553$$aWouters, D. J.$$b4
000851662 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b5
000851662 7001_ $$0P:(DE-Juel1)130948$$aSchneider, C. M.$$b6
000851662 7001_ $$0P:(DE-Juel1)130620$$aDittmann, R.$$b7$$eCorresponding author
000851662 773__ $$0PERI:(DE-600)2722985-3$$a10.1063/1.5026063$$gVol. 6, no. 4, p. 046106 -$$n4$$p046106 -$$tAPL materials$$v6$$x2166-532X$$y2018
000851662 8564_ $$uhttps://juser.fz-juelich.de/record/851662/files/1.5026063.pdf$$yOpenAccess
000851662 8564_ $$uhttps://juser.fz-juelich.de/record/851662/files/1.5026063.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851662 909CO $$ooai:juser.fz-juelich.de:851662$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851662 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131035$$aForschungszentrum Jülich$$b2$$kFZJ
000851662 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b5$$kFZJ
000851662 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b6$$kFZJ
000851662 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b7$$kFZJ
000851662 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000851662 9141_ $$y2018
000851662 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851662 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851662 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000851662 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPL MATER : 2015
000851662 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000851662 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000851662 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851662 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851662 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851662 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851662 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851662 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851662 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851662 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000851662 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000851662 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x2
000851662 980__ $$ajournal
000851662 980__ $$aVDB
000851662 980__ $$aI:(DE-Juel1)PGI-7-20110106
000851662 980__ $$aI:(DE-82)080009_20140620
000851662 980__ $$aI:(DE-Juel1)PGI-6-20110106
000851662 980__ $$aUNRESTRICTED
000851662 9801_ $$aFullTexts