001     851664
005     20220930130157.0
024 7 _ |a 10.1166/jbn.2019.2663
|2 doi
024 7 _ |a 1550-7033
|2 ISSN
024 7 _ |a 1550-7041
|2 ISSN
024 7 _ |a pmid:30480524
|2 pmid
024 7 _ |a WOS:000451075000013
|2 WOS
037 _ _ |a FZJ-2018-05214
082 _ _ |a 540
100 1 _ |a Hoffmann, Marco
|0 P:(DE-Juel1)164475
|b 0
245 _ _ |a Changing the Way of Entrance: Highly Efficient Transfer of mRNA and siRNA via Fusogenic Nano-Carriers
260 _ _ |a Valencia, Calif.
|c 2019
|b American Scientific Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582017329_32368
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Transferring nucleic acids into mammalian cells heavily influences life science for decades. While first applications mainly dealt with DNA transfer for various purposes as e.g., plasmid encoded protein expression or generation of mutant strains, subsequent applications additionally transferred RNA molecules of mainly small lengths for specific knockdown (RNAi) or site-specific genome modification (gRNA). Significant improvements in full length mRNA generation and extension of mRNA lifetimes additionally allows their use for transient expression in latest times. For all of these types of nucleic acids the most common cell incorporation method is based on complexation and subsequent endosomal uptake. This so-called lipofection can be used theoretically for almost any mammalian cell type and a tremendous number of different product compositions exist in order to deal with drawbacks as transfer efficiency, cell type selectivity, endosomal degradation, slow uptake and cytotoxicity. In contrast, new methods transfer complexed RNA molecules directly into the cytoplasm using liposomal nano-carriers that fuse with cellular plasma membranes immediately upon contact to free functional nucleic acids directly into the cytoplasm. Here, we compare both methods in detail with special focus on robustness, short- and long-term cytotoxicity, efficiency and functionality for various types of transferred RNA. Our data clearly indicate that direct RNA incorporation via fusogenic nano-carriers circumvents most endosomal uptake-based challenges, making it to a most promising alternative for nucleic acid transfer.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hersch, Nils
|0 P:(DE-Juel1)128815
|b 1
700 1 _ |a Merkel, Rudolf
|0 P:(DE-Juel1)128833
|b 2
700 1 _ |a Csiszar, Agnes
|0 P:(DE-Juel1)128805
|b 3
700 1 _ |a Hoffmann, Bernd
|0 P:(DE-Juel1)128817
|b 4
|e Corresponding author
773 _ _ |a 10.1166/jbn.2019.2663
|g Vol. 15, no. 1, p. 170 - 183
|0 PERI:(DE-600)2467196-4
|n 1
|p 170 - 183
|t Journal of biomedical nanotechnology
|v 15
|y 2019
|x 1550-7033
856 4 _ |u https://juser.fz-juelich.de/record/851664/files/Hoffmann%20et%20al.%20accepted%20version_TIF300DPI.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851664/files/JBN%20invoice--JBN-18-1505.pdf
856 4 _ |u https://juser.fz-juelich.de/record/851664/files/Hoffmann%20et%20al.%20accepted%20version_TIF300DPI.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851664/files/JBN%20invoice--JBN-18-1505.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:851664
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164475
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128815
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128833
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128805
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128817
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOMED NANOTECHNOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-7-20110106
|k ICS-7
|l Biomechanik
|x 0
980 1 _ |a APC
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21