000851717 001__ 851717
000851717 005__ 20240711085658.0
000851717 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2018.07.037
000851717 0247_ $$2ISSN$$a0955-2219
000851717 0247_ $$2ISSN$$a1873-619X
000851717 0247_ $$2Handle$$a2128/19746
000851717 0247_ $$2WOS$$aWOS:000444664300030
000851717 037__ $$aFZJ-2018-05249
000851717 082__ $$a660
000851717 1001_ $$0P:(DE-Juel1)168104$$aLiu, Yang$$b0$$eCorresponding author$$ufzj
000851717 245__ $$aCo and Fe co-doping influence on functional properties of SrTiO3 for use as oxygen transport membranes
000851717 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000851717 3367_ $$2DRIVER$$aarticle
000851717 3367_ $$2DataCite$$aOutput Types/Journal article
000851717 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1538457356_30027
000851717 3367_ $$2BibTeX$$aARTICLE
000851717 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851717 3367_ $$00$$2EndNote$$aJournal Article
000851717 520__ $$aPerovskite-structured powders of SrTi1-xCoxO3-δ (STC-x) with nominal stoichiometry of x = 0–0.75 as well as SrTi0.75Co0.25-yFeyO3-δ (STCF-y) where y = 0–0.25 were synthesized using the Pechini method. Thermal/chemical expansion behaviour, total electrical conductivities, and oxygen permeation rates were investigated. The substitution of Ti with Co leads to an increase in both electronic and ionic conductivities and, therefore, oxygen permeability. Thermal and chemical expansions also increase slightly. The optimum Co content was found to be 25–35% due to the trade-off between phase stability and permeability. The oxygen permeation rate of STC35 is comparable to that of state-of-the-art (La,Sr)(Co,Fe)O3-δ, whereas the expansion coefficients are lower. Co-doping in STCF-y did not produce any significant differences in oxygen permeability at both high temperature and sample thickness (1.0 mm), i.e. in a solid-state diffusion-limited regime. At lower temperatures (<800 °C), STC25 exhibits higher permeability than STF25 due to the higher catalytic activity of Co compared to Fe.
000851717 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000851717 588__ $$aDataset connected to CrossRef
000851717 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b1$$ufzj
000851717 7001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, Falk$$b2$$ufzj
000851717 7001_ $$0P:(DE-Juel1)166093$$aMüller, David$$b3$$ufzj
000851717 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
000851717 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2018.07.037$$gVol. 38, no. 15, p. 5058 - 5066$$n15$$p5058 - 5066$$tJournal of the European Ceramic Society$$v38$$x0955-2219$$y2018
000851717 8564_ $$uhttps://juser.fz-juelich.de/record/851717/files/1-s2.0-S0955221918304667-main.pdf$$yRestricted
000851717 8564_ $$uhttps://juser.fz-juelich.de/record/851717/files/paper-Liu.%20et.al%20-%20final_oa.pdf$$yOpenAccess
000851717 8564_ $$uhttps://juser.fz-juelich.de/record/851717/files/1-s2.0-S0955221918304667-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851717 8564_ $$uhttps://juser.fz-juelich.de/record/851717/files/paper-Liu.%20et.al%20-%20final_oa.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851717 909CO $$ooai:juser.fz-juelich.de:851717$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168104$$aForschungszentrum Jülich$$b0$$kFZJ
000851717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b1$$kFZJ
000851717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich$$b2$$kFZJ
000851717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166093$$aForschungszentrum Jülich$$b3$$kFZJ
000851717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000851717 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000851717 9141_ $$y2018
000851717 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851717 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851717 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851717 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2015
000851717 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851717 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851717 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851717 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851717 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851717 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851717 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851717 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851717 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851717 920__ $$lyes
000851717 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000851717 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
000851717 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x2
000851717 9801_ $$aFullTexts
000851717 980__ $$ajournal
000851717 980__ $$aVDB
000851717 980__ $$aUNRESTRICTED
000851717 980__ $$aI:(DE-Juel1)IEK-1-20101013
000851717 980__ $$aI:(DE-Juel1)PGI-6-20110106
000851717 980__ $$aI:(DE-82)080011_20140620
000851717 981__ $$aI:(DE-Juel1)IMD-2-20101013