001     851717
005     20240711085658.0
024 7 _ |a 10.1016/j.jeurceramsoc.2018.07.037
|2 doi
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a 2128/19746
|2 Handle
024 7 _ |a WOS:000444664300030
|2 WOS
037 _ _ |a FZJ-2018-05249
082 _ _ |a 660
100 1 _ |a Liu, Yang
|0 P:(DE-Juel1)168104
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Co and Fe co-doping influence on functional properties of SrTiO3 for use as oxygen transport membranes
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1538457356_30027
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Perovskite-structured powders of SrTi1-xCoxO3-δ (STC-x) with nominal stoichiometry of x = 0–0.75 as well as SrTi0.75Co0.25-yFeyO3-δ (STCF-y) where y = 0–0.25 were synthesized using the Pechini method. Thermal/chemical expansion behaviour, total electrical conductivities, and oxygen permeation rates were investigated. The substitution of Ti with Co leads to an increase in both electronic and ionic conductivities and, therefore, oxygen permeability. Thermal and chemical expansions also increase slightly. The optimum Co content was found to be 25–35% due to the trade-off between phase stability and permeability. The oxygen permeation rate of STC35 is comparable to that of state-of-the-art (La,Sr)(Co,Fe)O3-δ, whereas the expansion coefficients are lower. Co-doping in STCF-y did not produce any significant differences in oxygen permeability at both high temperature and sample thickness (1.0 mm), i.e. in a solid-state diffusion-limited regime. At lower temperatures (<800 °C), STC25 exhibits higher permeability than STF25 due to the higher catalytic activity of Co compared to Fe.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Baumann, Stefan
|0 P:(DE-Juel1)129587
|b 1
|u fzj
700 1 _ |a Schulze-Küppers, Falk
|0 P:(DE-Juel1)129660
|b 2
|u fzj
700 1 _ |a Müller, David
|0 P:(DE-Juel1)166093
|b 3
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 4
|u fzj
773 _ _ |a 10.1016/j.jeurceramsoc.2018.07.037
|g Vol. 38, no. 15, p. 5058 - 5066
|0 PERI:(DE-600)2013983-4
|n 15
|p 5058 - 5066
|t Journal of the European Ceramic Society
|v 38
|y 2018
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/851717/files/1-s2.0-S0955221918304667-main.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/851717/files/paper-Liu.%20et.al%20-%20final_oa.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/851717/files/1-s2.0-S0955221918304667-main.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/851717/files/paper-Liu.%20et.al%20-%20final_oa.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:851717
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168104
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129660
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166093
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-82)080011_20140620
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21