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Abstract 2 

 3 

Reliable and high-resolution subsurface characterization beyond the field scale is of great interest 4 

for precision agriculture and agro-ecological modelling because the shallow soil (~1-2 m depth) 5 

is responsible for the storage of moisture and nutrients that are accessible to crops. This can 6 

potentially be achieved with a combination of direct sampling and Electromagnetic Induction 7 

(EMI) measurements, which have shown great potential for soil characterization due to their non-8 

invasive nature and high mobility. However, only a few studies have used EMI beyond the field 9 

scale because of the challenges associated with a consistent interpretation of EMI data from 10 

multiple fields and acquisition days. In this study, we performed a detailed EMI survey of an area 11 

of 1 km2 divided in 51 agricultural fields where previous studies showed a clear connection 12 

between crop performance and soil properties. In total, nine apparent electrical conductivity 13 

(ECa) values were measured at each location with a depth of investigation ranging between 0-0.2 14 

to 0-2.7 m. Based on the combination of ECa maps and available soil maps, an a priori 15 

interpretation was performed and four sub-areas with characteristic sediments and ECa were 16 

identified. Then, a supervised classification methodology was used to divide the ECa maps into 17 

areas with similar soil properties. In a next step, soil profile descriptions to a depth of 2 m were 18 

obtained at 100 sampling locations and 552 samples were analyzed for textural characteristics. 19 

The combination of the classified map and ground truth data resulted in a 1 m resolution soil map 20 

with eighteen units with a typical soil profile and texture information. It was found that the soil 21 

profile descriptions and texture of the EMI-based soil classes were significantly different when 22 

compared using a two-tailed t-test. Moreover, the high-resolution soil map corresponded well 23 

with patterns in crop health obtained from satellite imagery. It was concluded that this novel EMI 24 
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data processing approach provides a reliable and cost-effective tool to obtain high-resolution soil 25 

maps to support precision agriculture and agro-ecological modelling. 26 

  27 
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1. Introduction 28 

 29 

The demand for reliable high-resolution soil maps at scales larger than the field-scale is of great 30 

interest for precision agriculture and agro-ecological modelling because local differences in 31 

shallow soil properties (~1-2 m max depth) are known to influence soil water movement and 32 

retention, nutrient availability, and root growth. Various thematic maps may provide information 33 

on soil characteristics (e.g., geological, soil, and yield potential maps). However, these available 34 

maps typically do not have the required resolution to support the identification and management 35 

of within-field differences in crop performance (Franzen et al., 2002; Nawar et al., 2017), 36 

because they are based on sparse and time consuming direct soil sampling. 37 

 38 

Hydrogeophysical methods provide a viable alternative to point-scale direct sampling (Robinson 39 

et al., 2008). In particular, electromagnetic induction (EMI) measurements have shown promise 40 

to characterize spatial variability in soil properties because of its high mobility (Robinson et al., 41 

2012; van Dam, 2012). EMI measures the apparent electrical conductivity (ECa) of the ground, 42 

which can be related to soil water content, pore water conductivity, soil porosity, and soil texture 43 

(Corwin and Lesch, 2003; Sheets and Hendrickx, 1995). 44 

 45 

At the field-scale (~1-10 ha) and beyond, a range of studies successfully used EMI for mapping 46 

relevant soil properties, such as the variation in soil texture and layering (Cockx et al., 2007; 47 

Kelley et al., 2017; Mertens et al., 2008), soil salinity (Huang et al., 2017a; Yao et al., 2016), soil 48 

water dynamics (Huang et al., 2017b), organic matter (Huang et al., 2017c), and CEC (Machado 49 

et al., 2015). In addition, EMI has been used to quantitatively link ECa, soil characteristics, and 50 

crop performance during periods of water stress (Rudolph et al., 2015). Despite these promising 51 



5 

 

results, the vertical resolution of soil characteristics obtained from EMI measurements was low in 52 

most studies. Recently, new EMI instruments with multiple coil separations and orientations have 53 

been introduced that provide improved vertical resolution, but they have not been widely used for 54 

soil characterization yet (von Hebel et al., 2014). 55 

 56 

EMI measurements are also used for soil characterization at scales larger than the field-scale (> 57 

10 ha) (e.g., Ding and Yu, 2014; Frederiksen et al., 2017; Zare et al., 2016). So far, EMI 58 

measurements were performed in a limited time-window in such large-scale studies, thus 59 

minimizing temporal variations in dynamic soil characteristics within the EMI survey (e.g. water 60 

content and soil temperature) (Frederiksen et al., 2017). However, this may not be feasible in 61 

complex agricultural areas where multiple fields are managed with different crops with variable 62 

harvest times. In such cases, it is expected that the spatial variation in ECa is difficult to interpret 63 

in terms of a single soil property. 64 

 65 

In the absence of direct correlations between EMI measurements and a single soil property, a 66 

range of studies have used clustering or classification of EMI data to identify zones with similar 67 

properties. For example, clustering of ECa maps has been widely used to identify management 68 

zones that can be treated homogeneously within precision agricultural applications. Most of such 69 

studies relied on a combination of EMI measurements, direct soil sampling, and yield maps (e.g., 70 

71 

Uribeetxebarria et al., 2018). Some studies also considered other proximal and remote sensing 72 

techniques in addition to EMI to identify management zones such as ground penetrating radar, 73 

gamma-ray spectrometry, and hyperspectral airborne and satellite images (Castrignano et al., 74 

2012; Ciampalini et al., 2015; De Benedetto et al., 2013; Huang et al., 2014; Jing et al., 2017; 75 
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Triantafilis et al., 2009). However, the majority of studies dealing with clustering of EMI data 76 

was focused on the field-scale and used only a single or limited number of EMI configurations. 77 

The applicability and utility of clustering EMI data to identify areas with similar soil properties 78 

have not been demonstrated yet for large-scale multi-configuration EMI data sets consisting of 79 

EMI measurements taken at different times and for a range of investigation depths. 80 

 81 

In this study, we focus on an agricultural area of 1.0 km2 near Selhausen (North-Rhine 82 

Westphalia, Germany) characterized by complex patterns in soil properties that are known to 83 

affect crop performance. These observed patterns in crop performance are not captured in detail 84 

by available soil maps. Therefore, the objective of this study is to obtain a high-resolution soil 85 

map with a detailed and quantitative representation of horizontal and vertical variability of soil 86 

properties from an extensive multi-configuration EMI survey that was carried out throughout the 87 

year 2016. For this, a supervised classification methodology adapted from remote sensing will be 88 

used to identify areas with similar soil properties from multi-configuration EMI data, and a 89 

limited number of ground-truth points will be used to obtain soil profile and texture information 90 

for each of these areas. Statistical analysis will be used to evaluate whether soil properties are 91 

significantly different between these areas. In a final step, the ability of the high-resolution soil 92 

map to capture patterns in plant stress will be evaluated using a comparison with crop 93 

performance patterns obtained from satellite images. 94 

  95 

 96 

2. Materials and methods 97 

 98 

2.1 Study area 99 
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 100 

The study was conducted in an agricultural area near Selhausen (Germany). It is located in the 101 

Rur Catchment (North-Rhine Westphalia) approximately 40 km west from Cologne (50102 

3  The shape of the study area is a square of 1x1 km bearing 12.75° east (Figure 1). 103 

The climate is characterized by an average precipitation of 715 mm and a mean annual 104 

temperature of 10.2°C (Rudolph et al., 2015). The altitude ranges between approximately 101 m 105 

and 113 m a.s.l. 106 

 107 

The shallow geology consists of quaternary sediments divided in two main geological areas: the 108 

upper terrace and the lower terrace. According to the 1:5,000 soil map of this area (Figure 1b), 109 

the upper terrace in the eastern part consists of Pleistocene sand and gravel sediments associated 110 

with the Rhine/Meuse river system (Röhrig, 1996). It is characterized by a system of subsurface 111 

channels filled and buried by aeolian sediments of variable thickness (Klostermann, 1992; 112 

Patzold et al., 2008; Vandenberghe and Van Overmeeren, 1999). The lower terrace in the western 113 

part consists of Pleistocene loess sediments and translocated loess sediments from the Holocene 114 

(Figure 1b). Similar to the upper terrace, part of the translocated loess of the lower terrace is 115 

deposited on Pleistocene/Holocene sand and gravel sediments (Röhrig, 1996). The two terraces 116 

are separated by a slope that ranges from 2% to 10% with a westbound dip and an approximately 117 

NNW-SSE strike. 118 

 119 

The dominant reference soil groups in the area are Cambisols, Luvisols, Planosols, and 120 

Stagnosols (WRB, 2015). The area is divided into 51 fields ranging in size from 0.5 to 10.0 ha. 121 

The fields are cultivated in rotation with winter wheat, barley and sugar beet. Occasionally 122 

potato, maize, oilseed rape, and oats are grown. According to the German cadaster, there are 52 123 
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different land owners but the effective number of farmers is lower than twenty because of kinship 124 

and lease. The large number of active farmers leads to a heterogeneous field management. 125 

 126 

Previous studies highlighted the influence of subsurface heterogeneity on crop performance in 127 

several fields located on the upper terrace (Rudolph et al., 2015; Simmer et al., 2015; Stadler et 128 

al., 2015). This is illustrated in a satellite image from a drought period (Figure 1a) where patterns 129 

in crop performance are visible in the upper terrace (fields F14a, F17a, F22b, F23, F24a-b, F47, 130 

and F49 in Figure 1a). Similar patterns are visible in the lower terrace, but these have not been 131 

studied yet (fields F39 and F40 in Figure 1a). 132 

 133 

Figure 1c presents the soil taxation map (NRW, 1960) of the study area (sheets 510410 (west) 134 

and 510411 (east)). This map shows the yield potential of the agricultural land at the scale of 135 

1:5,000 and provides soil profile information up to a depth of 1.0 meter. In general, this map is 136 

more detailed than the 1:5,000 soil map and represents the most detailed available soil 137 

information for the selected study area. However, it is not capable of representing the complexity 138 

of the subsurface for this particular study area. This is evident from a comparison with the 139 

observed patterns in crop performance shown in Figure 1a. The lack of detail in the soil taxation 140 

map is mainly due to the low sampling density of one drilling per 40-50 m used during mapping.  141 

 142 

2.2 Electromagnetic Induction (EMI) measurements 143 

 144 

Frequency domain EMI systems generate a fixed frequency alternating current through a 145 

transmitter coil, which generates the primary magnetic field. This primary magnetic field induces 146 

eddy currents in the electrically conductive subsurface, which in turn generate a secondary 147 
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magnetic field. The ratio between the secondary and primary magnetic field is related to the 148 

apparent electrical conductivity (ECa) and, to a lesser degree, to the apparent magnetic 149 

permeability over a certain depth range that depends on the source-receiver coil distance and 150 

orientation (Keller and Frischknecht, 1966; Ward and Hohmann, 1988). 151 

 152 

2.2.1 EMI instrumentation 153 

 154 

In this study, we simultaneously used the CMD-MiniExplorer (ME) with three receiver coils and 155 

coil separations of 32, 71, and 118 cm oriented in vertical coplanar configuration (VCP) and a 156 

custom-made CMD-MiniExplorer - Special Edition (SE) with six receiver coils and coil 157 

separations of 35, 50, 71, 97, 135, and 180 cm (GF instruments, Brno, Czech Republic) oriented 158 

in horizontal coplanar configuration (HCP) to collect data using both VCP and HCP 159 

configurations at the same time (Table 1). 160 

 161 

Figure 2 shows the depth-specific sensitivity of all EMI measurements in VCP and HCP 162 

orientation to the subsurface electrical conductivity distribution (McNeill, 1980). The VCP 163 

orientation is most sensitive to the shallow subsurface and becomes less sensitive with increasing 164 

depth, while the HCP orientation is less sensitive to the shallow subsurface and the sensitivity 165 

peaks at a depth of around 0.4 times the coil separation (McNeill, 1980). As a rule of thumb, the 166 

depth of investigation (DOI) for VCP is approximately 0.75 times the coil separation (s) and the 167 

DOI for HCP is approximately 1.5 times the coil separation. This result ranging from 0-168 

24 to 0-270 cm for our measurements set-up. 169 

 170 

2.2.2 EMI survey 171 
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 172 

The EMI measurements on the 51 agricultural fields (102 ha) shown in Figure 1a were performed 173 

between April and December 2016 within a few days after harvest of the different crops. For each 174 

field, a standardized measurement protocol based on best practice EMI measurements was 175 

followed (European Committee for Standardization, 2011). The EMI instruments were mounted 176 

on two plastic sleds that were separated by 1.5 m. A quad-bike was used to pull the sleds while 177 

keeping a distance of 4 m from the first sled. The driving speed ranged from 5 to 7km/h. The 178 

sampling frequency was 5 Hz, which resulted in an in-line resolution of approximately 0.3 m 179 

with a track spacing of 2.0 to 2.5 m. The EMI measurements were made in the direction of 180 

ploughing to avoid possible effects of terrain roughness on the EMI measurements. 181 

 182 

A single frequency GPS (NovAtel inc., Calgary, Canada (see Rudolph et al., 2018)) was used to 183 

provide spatial position during the measurements from April to October 2016 (a total of 76 ha).  184 

A TRX centerpoint DGPS system (Trimble inc., Sunnyvale, USA) with higher accuracy was used 185 

from November to December 2016 for a total of 21 ha. Despite the difference in accuracy 186 

between the single frequency GPS system (meter accuracy) and a DGPS system (cm accuracy), 187 

we considered the measurements obtained with the two GPS systems as equally reliable for the 188 

purpose of this study. Each field was measured continuously and the first line of EMI 189 

measurements was repeated at the end of each field survey to verify that no unexpected shifts in 190 

the measured ECa occurred. In general, the difference in ECa values measured at the start and at 191 

the end of each survey was negligible. 192 

 193 

2.2.3 Data filtering and interpolation 194 

 195 
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The CMD-MiniExplorer and the CMD-MiniExplorer Special Edition have been factory-196 

calibrated using the supplied handle (i.e., a crutch). Therefore, it is not necessary to perform in-197 

field zeroing. Both devices also internally compensate for temperature changes during a survey 198 

with a stability of 0.1 mS/m per °C (GF_Instruments, 2011). Nevertheless, negative ECa values 199 

were measured in this study as already observed in previous studies (Rudolph et al., 2015; von 200 

Hebel et al., 2014). Some studies have therefore calibrated the ECa measurements with 201 

independent electrical resistivity tomography (ERT) data (Lavoué et al., 2010; Shanahan et al., 202 

2015) in order to obtain quantitative EMI data that allow inversion (Mester et al., 2011; von 203 

Hebel et al., 2014). Alternatively, calibration can be achieved using a metal sphere or by 204 

measuring at multiple elevations (Tan et al., 2018; Thiesson et al., 2014). Since repeated 205 

calibration is difficult to achieve for the EMI survey presented here, we applied a correction 206 

based on a linear regression between EMI measurements made with the sled and the supplied 207 

handle for each EMI coil configuration. In this approach, it is assumed that the required 208 

calibration of each EMI coil configuration is relatively stable in time, which is consistent with 209 

our experience with EMI calibration. 210 

 211 

Since measured  ECa values are rarely normally distributed (Minsley et al., 2012), we applied an 212 

histogram-filtering technique following von Hebel et al. (2014) to identify and exclude outliers. 213 

The filter divides the data into 15 bins. Bins containing <0.5% of the data were removed. 214 

Afterwards, neighboring ECa measurements that showed differences larger than 1 mS/m were 215 

removed to avoid unrealistically high lateral ECa variation. In a next step, the filtered data of 216 

each coil configuration were interpolated to a regular 1 by 1 m grid using ordinary Kriging with 217 

an exponential semivariogram. The individual interpolated surfaces for each coil configuration 218 

were merged together in a raster mosaic dataset. 219 



12 

 

 220 

2.2.4 Temperature correction 221 

 222 

To standardize the EMI data to a reference temperature of 25°C, we performed a correction for 223 

soil temperature using the approach of Campbell et al. (1949). 224 

 225 

,                                                                                                                              (1) 226 

 227 

where ECa
T is the ECa measured at soil temperature T and fT is a temperature correction factor 228 

given by 229 

 230 

                                                                                                  (2) 231 

 232 

as proposed by Sheets and Hendrickx (1995), corrected by Corwin and Lesch (2005) and used in 233 

many time lapse EMI studies (e.g. Robinet et al., 2018). The average soil temperature between 8 234 

AM and 8 PM at all measurement days was obtained by averaging the measurements from three 235 

soil temperature sensors installed in field F10 at a depth of 0.5 m. The minimum soil temperature 236 

was measured on the 5th of December (4.7°C when field F50 was measured), while the highest 237 

temperature was measured on 15th of September (20.8°C when fields F38 and F39 were 238 

measured). It is important to realize that this temperature correction will not be able to overcome 239 

all differences in mean ECa between fields, since EMI data were acquired in different seasons 240 

and after different agricultural management (e.g., type of crop, timing of fertilization). 241 

 242 

2.3 Classification of ECa maps 243 
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 244 

 A flowchart of the classification methodology including aspects of preprocessing as well as the 245 

selection of sampling locations for ground truth data is shown in Figure 3. The following 246 

analyses were performed using ArcGIS Desktop software. The first step of the classification was 247 

to merge the EMI measurements obtained with the six coil separations in the HCP orientation. 248 

For this, we used a raster processing composite band tool (ESRI, 2017) to generate a multiband 249 

raster dataset, where HCP coils with increasing separation represent the different bands ( 250 

Figure 4). We decided not to add the VCP configurations to the multiband image because the 251 

stronger sensitivity to shallow layers resulted in higher noise and because the relatively 252 

homogeneous ploughing horizon of ~30 cm thickness resulted in relatively constant ECa values 253 

within each single field for these configurations. However, the EMI measurements in VCP mode 254 

will be used in the following to support the interpretation of the EMI data. 255 

 256 

To classify the multiband raster data, a supervised classification method was used. In a first step, 257 

the number of soil classes and their interpretation need to be defined. For this interpretation, 258 

information contained in the nine ECa maps, the soil map, the soil taxation map, as well as expert 259 

knowledge from previous studies and field observations were taken into account. As a result of 260 

this interpretation process, the amount and type of soil classes is known for each field. 261 

 262 

In a next step, the multiband raster of EMI data was used to classify the survey area field-by-263 

field. This was necessary because EMI data were found to vary between fields due to other 264 

factors besides soil properties (see results section for a more detailed analysis of this variability). 265 

For each field, areas belonging to a specific soil class were identified within the multiband raster 266 

data (so-called training areas). This was achieved by visualizing different combinations of EMI 267 

coil separations displayed with RGB composite colors (see  268 

Figure 4 for one possible example). After the training areas were selected for each soil class, 269 

histograms of ECa values for each class and band as well as scatter plots of ECa values for all 270 
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classes for different combinations of bands were used to evaluate the distribution and separation 271 

of the classes in the six-dimensional space of the measured ECa values. When it was not possible 272 

to achieve a proper separation of the clusters in all fields using the given number and 273 

interpretation of classes, then the interpretation was reviewed and the process was repeated until a 274 

proper cluster separation was achieved on all fields. 275 

 276 

After defining the training areas for a given field, a Maximum Likelihood classification (ESRI, 277 

2017) was used to classify all raster cells of a field. For this, the mean  and the covariance matrix 278 

of the training areas were calculated (Ball and Hall, 1965; ESRI, 2014; Richards, 1999). Based on 279 

this, the statistical probability that a particular cell belongs to each class was calculated and the 280 

cell was assigned to the class with the highest probability. After this classification, a raster map 281 

of the field is obtained where every cell is assigned to the most probable class. 282 

 283 

After the classification of each field, the results were merged together to obtain one classified 284 

map of the whole study area. Next, two filtering procedures were applied to remove small areas 285 

characterized by a single or few cells as well as to smooth the boundaries between different 286 

classes. First, a majority filter (ESRI, 2017) was used to replace cell values based on the value 287 

that occurs most often within the eight neighboring cells. This replacement occurred only when 288 

the number of neighboring cells from the same soil class is large enough to be the majority (e.g. 5 289 

out of 8 cells) (ESRI, 2014). Second, a boundary clean filter (ESRI, 2017) relying on an expand-290 

and-shrink method in order to clean the boundaries from ragged edges between different soil 291 

classes was used. A sorting based on the size of different zones represented by a single class was 292 

applied to facilitate the expansion of large zones over small ones (ESRI, 2014).  293 

 294 
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2.4 Soil sampling for ground truth information 295 

 296 

Based on the final map obtained from the classification of EMI data, 100 soil augering locations 297 

were selected where soil profile descriptions and soil samples were acquired. The sampling 298 

points were distributed amongst all the soil classes and the number of points per soil class was 299 

based on the total area of the soil class itself with a minimum of three sampling locations per soil 300 

class. For each of the 100 points, a random location within the assigned class was determined. 301 

Each location was at least 2.5 m away from the boundary between two soil classes. Also, 302 

locations within the same soil class were separated by at least 150 m. In January and February 303 

2017, all locations were visited using a DGPS system (Trimble inc., Sunnyvale, USA) and a 304 

Pürckhauer auger was used to sample and describe the soil up to a maximum depth of 2.0 m. 305 

 306 

The maximum augering depth at each location varied considerably because of the presence of 307 

horizons with high gravel content or strong cementation. For each sampling location, a soil 308 

profile description was obtained with information on horizon type, horizon thickness, total depth, 309 

and color. To delineate horizons in the field, text hand texturing310 

(Sponagel et al., 2005; Vos et al., 2016). For each horizon, at least one soil sample was collected. 311 

When layers with different texture were identified in a single horizon, multiple samples were 312 

collected. All soil samples were stored in a refrigerated room until the gravimetric water content 313 

was estimated by drying the sample at a temperature of 105°C for 36 hours. The weight fraction 314 

of gravel (> 2 mm) was determined using sieving. Afterwards, the texture of each sample was 315 

analyzed with a combined sieving and pipette method using a Sedimat 4-12 apparatus (UGT, 316 

Umwelt Geräte Technik GmbH, Münchenberg, Germany).  317 

 318 
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The soil profiles of all ground truth locations within a single soil class were averaged to obtain a 319 

typical soil profile with information on horizon type, depth, texture, and gravimetric water 320 

content for that particular class. To compare different soil classes, the soil classes were ordered 321 

according to decreasing average ECa. Two tailed t-tests were performed between matching 322 

horizons of two adjacent soil classes to establish whether there are statistically significant 323 

differences. For this statistical analysis, the horizons Ap and AB were considered as a single 324 

horizon. The null-hypothesis of equal means in the t-test was rejected when the computed t-value 325 

was higher than the 5 % level of significance (2.5 % in each tail). 326 

 327 

2.5 Comparison with satellite image 328 

 329 

To test the potential of the EMI-based soil map to identify areas with variable crop growth, we 330 

compared it with observed field-scale patterns in crop growth derived from remote sensing. For 331 

this, we used a WorldView-2 panchromatic satellite image with 0.5 m resolution provided by 332 

DigitalGlobe within ArcGIS Basemap (ESRI, 2016). The image was collected during a drought 333 

period in July 2015 (Figure 1a). Here, we analyze a set of fields that were cropped with sugar 334 

beet in 2015 (F05,F07, F08, F17a, F22b, F23, F24, F39, F40 and F49) since sugar beet is known 335 

to show visual signs of drought stress in this area (Rudolph et al., 2015). In each of the sugar beet 336 

fields, areas with relatively stressed crops (light green) and areas with relatively healthy crops 337 

(dark green) were manually digitized on the satellite image. 338 

In order to quantify the correspondence between each class of the soil map and the crop 339 

performance derived from the satellite image, the number of cells located on stressed and healthy 340 

crops was determined for each class of the soil map for each field. If more than 50% of the cells 341 

of a soil class for a particular field were stressed crops, the soil class was assumed to correspond 342 
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with stressed conditions (and vice versa). The correspondence of each soil class with the satellite 343 

image was quantified using the true positive ratio (TPR), which is the fraction of cells correctly 344 

classified as being stressed, and the true negative ratio (TNR), which is the fraction of cells 345 

correctly classified as healthy crops. Due to these definitions, TPR and TNR can range from 50 to 346 

100%. 347 

 348 

 349 

3. Results and discussion 350 

 351 

3.1 Large-scale EMI survey 352 

 353 

The ECa maps presented in Figure 5 show that the study area can be divided in four sub-areas 354 

(Figure 5c), each with characteristic sediments and ECa values and patterns. This subdivision was 355 

performed by comparing the patterns in ECa maps (Figure 5a-f) and their general ECa values 356 

(Table 2) with the geometry of the soil map (Figure 5a) and, to a lesser degree, of the soil 357 

taxation map (Figure 5b). Here, it is assumed that the soil maps provide reliable information on 358 

the type and origin of the sediments, albeit with a low resolution because of the lower density of 359 

the ground truth information used to create the maps. Therefore, the joint interpretation of ECa 360 

maps (horizontal geometry) and soil maps (type and origin of sediments) results in a more 361 

reliable subdivision of the study area. From east to west, the following sub-areas were identified: 362 

a buried paleochannel system on the upper terrace (sub-area A in Figure 5c), a transition zone 363 

associated with a slope heading N-S (sub-area B in Figure 5c), a relatively homogeneous area in 364 

the center (sub-area C in Figure 5c), and a second heterogeneous area in the west (sub-area D in 365 

Figure 5c). In the following, the ECa maps from these four sub-areas are discussed in more detail. 366 
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 367 

Sub-area A was partly studied by Rudolph et al. (2015), and is characterized by relatively low 368 

ECa values compared to the rest of the study area (Table 2). The geometry of this sub-area agrees 369 

well with the Pleistocene loess deposits on sand and gravel described in the soil map (Figure 1b). 370 

Therefore, it is assumed that the entire sub-area A is characterized by paleochannels cut in sandy-371 

gravel material and then filled by finer loess sediments. These paleochannels are characterized by 372 

a relatively higher ECa because of the larger thickness of the loess sediments with higher silt and 373 

clay content and higher water storage capacity (Rudolph et al., 2015). The average ECa generally 374 

increased with DOI for both VCP and HCP coil configurations (Table 2). However, the range of 375 

ECa values is relatively small, especially when compared to the rest of the study area. A 376 

geomorphological interpretation of the pattern of buried channels indicates that the stream type 377 

was an anastomosing fluvial system with multiple channels (Rosgen, 1994). 378 

 379 

The transition zone represented by sub-area B coincides with the slope that strikes N-S across the 380 

study area. The morphology of the area, the soil map description (Pleistocene loess sediments), 381 

and the patterns in the ECa maps suggest the presence of Holocene slope deposits located on 382 

Pleistocene loess sediments. Some of these deposits are partly anthropogenic since the slope has 383 

been repeatedly flattened to facilitate agricultural management. A more detailed description of 384 

the geomorphology of this sub-area is provided in Appendix A. In general, the ECa values 385 

increase with DOI for both VCP and HCP configurations and they are higher compared to sub-386 

area A (Table 2). The increase of ECa with DOI is most pronounced for the deeper sensing 387 

configurations (HCP with 130 cm and 180 cm coil separation). This is probably related to the 388 

presence of fine sediments in the deeper layers compared to the shallow surface. 389 

 390 
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The ECa values in sub-area C also showed a general increase with DOI and were relatively 391 

higher when compared to the other three sub-areas (Table 2). This area was previously described 392 

as a homogeneous lower terrace  using measurements in VCP and HCP configuration with a 393 

small offset (Rudolph et al., 2015). The soil taxation map (Figure 1c) describes this area as 394 

relatively homogeneous with loamy sediments, while the soil map (Figure 1b) indicates 395 

Pleistocene loess and translocated loess. The higher ECa values in sub-area C suggest the 396 

presence of soils and sediments with higher clay content. The remains of irrigation channels and 397 

water ponds are visible in the ECa maps of this sub-area (Figure 5d), and these features are 398 

described in detail in Appendix A. 399 

 400 

The heterogeneous sub-area D was measured for the first time with EMI in this study. Generally, 401 

the average ECa values again increased with DOI both for the VCP and for the HCP coil 402 

configurations. The pattern visible in the ECa map (Figure 5) suggests that the subsurface of sub-403 

area D is also characterized by a buried fluvial system and that the paleochannels are again 404 

characterized by a relatively higher ECa.. However, the different geometry of the buried channels 405 

and the higher ECa values suggest a different type of fluvial activity. This is corroborated by the 406 

soil map that indicates translocated loess sediments on sand and gravels (Holocene-Pleistocene). 407 

Furthermore, the buried channels are straighter and wider compared to sub-area A. Likely, the 408 

depositional environment was closer to a braided fluvial system (Rosgen, 1994).  409 

 410 

3.2 Heterogeneity at the field-scale 411 

 412 
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Besides the large-scale patterns in ECa values, field-scale variability in ECa values is also 413 

apparent. For example, fields F08 and field F24a-b were managed differently before the EMI data 414 

acquisition that took place on the same day ( 415 

 416 

 417 

 418 

Figure 6a). Field F08 and field F24a were cropped with wheat by two different farmers, while 419 

field F24b was cropped with barley. Therefore, it is assumed that the observed differences in ECa 420 

for field F08 and field F24a-b are related to the different management that has resulted in 421 

different soil water content or different pore water conductivity at the time of data acquisition. 422 

Similarly,  423 

 424 

 425 

 426 

Figure 6b shows variations in ECa values between adjacent fields that were not measured at the 427 

same time. As in the previous case, part of the observed variation is related to differences in field 428 

management. More importantly, there are differences due to the variable amount of precipitation 429 

in the days before data acquisition, which obviously affects soil water content and thus ECa 430 

values. 431 

 432 

Although these two examples illustrate that variable management and timing of EMI data 433 

acquisition affected the ECa maps, it can be seen that the characteristics of the subsurface in 434 

terms of layering and texture are still identifiable, since a range of features that cross the field 435 

boundaries are apparent ( 436 

 437 

 438 

 439 
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Figure 6b). Here, it is important to emphasize that the adopted approach for ECa correction 440 

(calibration and temperature) was not expected to correct these differences in ECa between fields, 441 

since they are likely related to variations in soil water content and pore water conductivity. To 442 

overcome this secondary variability in ECa as much as possible, it was required to apply the 443 

classification methodology to each field independently. 444 

 445 

3.3 Definition of the classes 446 

 447 

After subdividing the study area in four different sub-areas, it was assumed that the soils in each 448 

sub-area are different because of the different type and age of the sediments. Further subdivision 449 

within each sub-area was performed prior to the classification of each field. 450 

In sub-area A, the best distribution and separation of the clusters in the six-dimensional space  451 

provided by the EMI data in the multiband raster was achieved by using four soil classes, which 452 

are named A1a, A1b, A1c, and A1d in the following. These soil classes showed a general 453 

decrease in ECa from class A1a to A1d (Table 3). 454 

 455 

In sub-area B, an appropriate separation of clusters was obtained using a total of five soil classes 456 

divided in two groups: two soil classes representing natural soils (B1a and B1b) and three 457 

representing anthropogenic soils (B2a, B2b, and B2c). Generally, ECa was higher in natural soils 458 

compared to anthropogenic soils (Table 4). Moreover, ECa decreased from soil class B1a to B1b 459 

and from soil class B2a to B2c (Table 4).  460 

 461 

In sub-area C, a clear subdivision can be made between anthropogenic soils (Figure 5d) and the 462 

surrounding natural soils. The anthropogenic soils were divided in buried irrigation channels 463 
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(class C2a) and buried water ponds (class C2b, Table 5). These soil classes were manually 464 

determined in the multiband raster because of their evident geometry (Figure 5d and Appendix 465 

A) and subsequently removed from the multiband image to avoid any influence in the 466 

classification process. The remaining area of sub-area C is apparently homogeneous according to 467 

the 1:5000 soil map and the soil taxation map (Figure 1b-c). However, the range of ECa (e.g., 468 

from 9.2 to 35.1 mS/m in HCP 35 cm and from 13.8 to 34.2 mS/m in HCP 180 cm) suggested 469 

further subdivision and the use of two soil classes C1a and C1b with different ECa (Table 5). 470 

 471 

In sub-area D, the best distribution and separation of clusters was provided by using five soil 472 

classes. The four soil classes D1a, D1b, D1c, and D1d represent natural soils, and soil class D2a 473 

represents an anthropogenic structure in field F39. The ECa of soil class D2a was highest, then 474 

the ECa decreased from soil class D1a to D1d (Table 6). 475 

 476 

Using these classes, the multiband ECa image of each field was classified. This resulted in a high 477 

resolution soil map composed of four sub-areas divided in a total of 18 soil classes. In the 478 

following, the results for each sub-area are presented separately to facilitate the description and 479 

the understanding of the high resolution soil map obtained by combining the classification results 480 

with the ground truth sampling. 481 

 482 

3.4.1 Classified ECa map of sub-area A 483 

 484 

The results of the supervised classification of sub-area A are shown in  485 

 486 

 487 
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Figure 7b while the average soil profiles of each soil class are shown in  488 

 489 

 490 

Figure 7c. The soil profiles of each soil class are richer in fine sediments (clay and silt) in the Ap-491 

AB, and Bw horizons characterized by Aeolian sediments. The deeper horizons consisted of 492 

coarser sediments composed of Pleistocene sand and gravels. The average ECa for each 493 

configuration decreased from soil class A1a to class A1d (Table 3).  This may be due to the 494 

decreasing maximum depth of the Bw horizon that consists of finer sediments ( 495 

 496 

 497 

Figure 7c). A pairwise t-test between neighboring soil classes indicated that this maximum depth 498 

was significantly different only between classes A1a and A1b (p = 0.040). However, the textural 499 

data showed a significant difference (p = 0.031) in gravel content between the Ap-AB horizon of 500 

soil class A1b (16.7 %) and A1c (29.8 %). In addition, the clay content of the AP-AB horizon in 501 

class A1c (14.4 %) was significantly higher (p = 0.034) than that of class A1d (12.9 %).These 502 

textural characteristics are in agreement with the decreasing average ECa from soil class A1b to 503 

A1d. The average texture of all soil profiles for sub-area A-D and the results of all pairwise t-504 

tests within each sub-area are provided in the supplementary information. 505 

 506 

3.4.2 Classified ECa map of sub-area B 507 

 508 

The results of the supervised classification of sub-area B are shown in Figure 8b and the average 509 

soil profiles are shown in Figure 8c-d. Compared to sub-area A, the soil profiles in this sub-area 510 

generally have a Bg horizon below the Bw horizon. Moreover, the 2C horizon consisting of 511 
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coarse sediments that is common in sub-area A was found only in one of the five soil classes of 512 

sub-area B. An Ap-AB horizon was always found on top of each profile. 513 

 514 

Table 4 shows that the average ECa is higher in soil class B1a compared to B1b. Together with 515 

the presence of the 2C horizon in soil class B1b, this suggests that B1b represents areas in which 516 

the 2C horizon, typical of sub-area A, is present below slope deposits. Although there were no 517 

significant differences in horizon depth between class B1a and B1b, we did observe significant 518 

differences in texture as indicated in Figure 8c. The most evident was the higher clay content of 519 

the Ap-AB, Bw, and Bg horizons of class B1a (15.9 %, 17.3 %, and 22.5 % compared to 12.3 %, 520 

16.4 % and 18.1 % with p = 0.005, p = 0.006, and p = 0.002). In addition, the sand content of the 521 

Ap-AB and Bg horizons of class B1a was lower than in B1b (15.1%, and 12.8 % compared to 522 

19.2 %, and 17.8 % with p = 0.002, and p = 0.012). Again, these textural differences are 523 

consistent with observed differences in ECa. In contrast with the decrease in average ECa, the 524 

gravel content of the Bg horizon of soil class B1a was significantly higher than that of class B1b 525 

(12.8 % compared to 1.6 %, p = 0.014). However, we assume that this difference in gravel 526 

content is secondary given the aforementioned differences in textural characteristics and layering 527 

of these two classes. 528 

 529 

Soil classes B2a, B2b, and B2c are characterized by anthropogenic deposits in the first ~70-95 530 

cm of the profile. The profiles of classes B2a and B2b are relatively similar, and no significant 531 

differences were found in horizon depth. Again, the texture showed meaningful differences. The 532 

clay content of the Ap-AB horizon of class B2a was significantly higher than that of B2b (15.1 % 533 

compared to 12.0 %, p = 0.002). Even though the anthropogenic horizon of soil class B2b 534 

showed a significantly higher sand content (19.7 % compared to 15.1 %, p = 0.020), the profile 535 
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and texture were considered to be consistent with the higher average ECa of class B2a. The 536 

profile of soil class B2c is the only one without a Bg horizon. At the same time, the Ap-AB 537 

horizon of this class is characterized by a significantly higher gravel content compared to class 538 

B2b (24.3 % in class B2c compared to 3.5 %, p = 0.001). Furthermore, the sand content of the 539 

Ap-AB horizon is significantly higher in soil class B2c (21.7 % compared to 17.1 %, p = 0.010). 540 

This is in agreement with the lower average ECa in class B2c compared to class B2b and 541 

apparently compensates the significantly higher clay content of horizon Ap-AB of class B2c 542 

(14.9 % in class B2c compared to 12.0 % in class B2b, p = 0.006). Note that each of these 543 

anthropogenic soil classes was characterized using only three ground truth sampling locations, so 544 

that the provided interpretation should be considered with some caution. 545 

 546 

3.4.3 Classified ECa map of sub-area C 547 

 548 

The results of the supervised classification of sub-area C are shown in  549 

 550 

 551 

 552 

 553 

Figure 9b and the average profiles of the four soil classes are shown in  554 

 555 

 556 

 557 

 558 
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Figure 9c-d. The profiles in this sub-area are relatively simple. A Bg horizon is consistently 559 

present below a Bw horizon and an Ap-AB horizon is always found on top of each profile. 560 

 561 

The two soil classes associated with natural deposits (C1a and C1b) did not show significant 562 

differences in the horizon depths, and also no significant differences in texture were found. This 563 

could be expected considering the subtle differences in ECa between the two classes (Table 5). 564 

However, a significant difference in gravimetric water content was found for the Bg horizons. 565 

The gravimetric water content was significantly higher in soil class C1a (16.0 % compared to 566 

14.1 %, p = 0.021), which is in agreement with the higher average ECa for this class, and this 567 

may be related to differences in bulk density at depths. Nevertheless, these two classes are 568 

considered to be similar and could be merged according to the ground truth information. 569 

 570 

For the anthropogenic soil classes (C2a and C2b), the soil profiles differ in the thickness and thus 571 

the maximum depth of the anthropogenic horizon and the depth of the Bg horizon. The 572 

anthropogenic horizon extends to 112.5 cm in C2b compared to a mean depth of 51.0 cm in C2a 573 

(p = 0.036). In addition, the top of the Bg horizon is 129.0 cm in C2b compared to 86.0 cm in 574 

C2a (p = 0.034). This is in agreement with the interpretation of anthropogenic fillings of old 575 

irrigation networks (class C2a) and water ponds (class C2b) that are further discussed in 576 

Appendix A. 577 

 578 

3.4.4 Classified ECa map of sub-area D 579 

 580 

The results of the supervised classification of sub-area D are shown in Figure 10b, while the 581 

average profiles of each soil class are shown in Figure 10c and Table 6 provides the average ECa 582 
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values and the standard deviation for each of the four soil classes. The soil profile of each soil 583 

class is characterized by finer sediments in the top horizons (Ap-AB, Bw, and Bg) above a 584 

coarser 2C horizon. Another anthropogenic soil class with an Ap-AB horizon over an 585 

anthropogenic layer is also present in this sub-area. 586 

 587 

The four soil classes D1a-d showed similar horizon types. An Ap-AB horizon was found over 588 

Bw and Bg horizons with variable thickness followed by a coarser 2C horizon. Similar to sub-589 

area A, the decrease in depth to the coarse 2C horizon corresponds with a decrease in average 590 

ECa going from class D1a to class D1d (Table 6). The difference in depth to the 2C horizon are 591 

statistically significant between classes D1b and D1c (122.7 cm in class D1b and 83.3 cm in class 592 

D1c, p = 0.034). This difference was not statistically different between classes D1a and D1b, but 593 

the textural analysis revealed a significant difference in gravel content of the Ap-AB horizon 594 

(higher in class D1b with 4.3 % compared to 0.9 %, p = 0.044) and in sand content of the Bw 595 

horizon (again higher in class D1b with 17.8 % compared to 14.5 %, p = 0.030). The difference 596 

in depth was also not statistically significant between soil classes D1c and D1d. However, the 597 

clay content of the Ap-AB horizon of soil class D1c was significantly higher than that of class 598 

D1d (17.2 % compared to 15.0 %, p = 0.030). These observed differences in texture are in 599 

agreement with the decrease in average ECa from class D1a to D1d. 600 

 601 

Soil class D2 showed an anthropogenic horizon over coarser sediments in all four ground truth 602 

locations. No other horizon type (e.g. Bw, Bg, or 2C) was found in these four profiles. The coarse 603 

horizon at the bottom of the four profiles was different from the 2C horizon of the other classes 604 

of sub-area D. This was confirmed by differences in the color of the sediments, the shape of the 605 

gravels, and the generally higher clay, and water content compared to the 2C horizon of the other 606 



28 

 

soil classes. This soil class was interpreted as the remains of a small brook that was recently 607 

buried with anthropogenic filling (also see Appendix A). 608 

 609 

3.5 Comparison with patterns in plant stress 610 

 611 

In order to verify the ability of the high-resolution soil map to represent agronomically relevant 612 

processes, it was compared to patterns in crop stress in sugar beet obtained from satellite imagery 613 

(Figure 11). This comparison focused on approximately one fourth of the study area (25.5 ha) 614 

covered with sugar beet and considered fields from all four sub-areas. Figure 11 shows the 615 

patterns in crop stress determined for field F05 (Figure 11b) and field F07 (Figure 11e). It can be 616 

seen that these patterns match well with the high resolution soil map for both fields (Figure 11c 617 

and Figure 11f), and the match is visualized in Figure 11d and Figure 11g, where green cells 618 

indicate correctly classified cells and red cells indicate incorrectly classified ones. 619 

 620 

To quantify the match between the soil map and the patterns in crop stress, the TPR and TNR 621 

were first calculated for each class and then aggregated to the field-scale using weighted 622 

averaging (Table 7). The TPR represents the percentage of cells that are correctly classified as 623 

stressed crops, and ranged from 60.2 to 93.5% for the investigated fields. The weighted average 624 

for the study area was 77.9%. The TNR represents the percentage of cells that are correctly 625 

classified as healthy crops, and ranged from 62.7 to 97.1% with a weighted average of 89.0% for 626 

the study area. 627 

 628 

In sub-area A, the TPR is 80.4%, the TNR is 73.6%, and the weighted average is 76.6% (Table 7). 629 

The result of the classification in this sub-area is satisfying with a high accuracy in the 630 
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classification of areas with stressed crops (soil classes A1c-d). In sub-area B, only soil class B1b 631 

corresponded to stressed crops and the TPR is 73.1%. All other soil classes corresponded to 632 

healthy crops, and the TNR was 95.2%. However, this high TNR is affected by the large area of 633 

healthy crops (85%) in this sub-area. Sub-area C is entirely covered with healthy plants. 634 

Consequently, it has no TPR and a TNR of 100%. In sub-area D, the TPR is 62.7%, the TNR is 635 

84.6%, and the weighted average is 83.3%. Similar to sub-area B, is mostly covered with healthy 636 

crops (~85%, soil classes D1a-c and D2a), resulting in a high TNR. In this sub-area, the relatively 637 

poor TPR is most probably connected with the conditions in which field F40 was measured 638 

(under heavy rain, the 20th and 21st of October 2016). 639 

 640 

Overall, the correspondence between the high-resolution soil map and the satellite image was 641 

found to be satisfying, also because the geometry of the areas in which crops are experiencing 642 

water stress during drought periods was identified to a reasonable degree. 643 

 644 

 645 

4. Summary and Conclusions 646 

 647 

In this study, multi-configuration EMI measurements were combined with ground truth data to 648 

obtain a high-resolution soil map of a 1 x 1 km area. Due to the size of the investigated area and 649 

the heterogeneous land management, it was necessary to acquire EMI measurements field by 650 

field over a period of several months. Therefore, changes in ECa between fields due to different 651 

water content and land management (crop type, fertilization, etc.) were present in the final ECa 652 

maps of the study area. To enable a classification of the ECa measurements into areas with 653 

similar soil properties, an approach commonly used for the interpretation of multi-band remote 654 
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sensing data was adopted. For this, a multi-band image was created from the ECa data and a 655 

supervised image classification strategy that additionally relied on available low-resolution soil 656 

maps was used to divide the study area in a finite number of soil classes. In particular, the study 657 

area was first divided in four sub-areas based on the nine available ECa maps and the available 658 

soil maps. In a second step, these four sub-areas were further divided in a total of 18 soil classes 659 

using a field-by-field analysis. It is clear that the results of such supervised classification depend 660 

to some extent on the interpreter, as is the case for many soil maps. Nevertheless, it was found 661 

that this approach was most suited to obtain soil information from the EMI measurements in the 662 

presence of additional variation due to variable water content and pore water conductivity. Future 663 

research could explore the benefit of advanced unsupervised classification methodologies to 664 

obtain a more objective approach. 665 

 666 

In a next step, we selected 100 locations where soil profile descriptions to a maximum depth of 667 

two meters were obtained and a total of 552 samples were collected and analyzed to obtain 668 

textural characteristics. The profiles of each class were averaged to obtain typical soil profiles for 669 

each soil class with information on horizon type, layer depth, water content, and soil texture. In 670 

each sub-area, classes were ordered according to their average ECa. Then, neighboring classes 671 

were compared using two tailed t-tests that were performed between matching horizons. It was 672 

found that there were significant differences between the soil profiles in terms of layering and 673 

texture, and that the observed differences were in agreement with the variation of average ECa 674 

between different classes. The final product of this study is a 1 m resolution soil map with 18 675 

units with typical soil profile and texture information. 676 

 677 
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Finally, the high-resolution soil map was compared with patterns in crop stress obtained from a 678 

satellite image to verify that the soil map is able to represent such patterns. This evaluation was 679 

performed for approximately one fourth of the study area, and it was found that areas with 680 

stressed crops matched well with particular soil types. This indicates that the high-resolution soil 681 

map obtained from a combination of multi-configuration EMI measurements and ground truth 682 

data is useful for defining zones that require variable management within precision agriculture 683 

applications. In addition, the high-resolution soil map is useful as input for agro-ecological model 684 

applications to predict crop stress as a function of environmental boundary conditions (soil, water 685 

availability, crop type). This will be explored in a follow up study. 686 

 687 
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Appendix A  Geomorphological interpretation of EMI data 700 

 701 

In this appendix, an interpretation of the geomorphological features that are visible in sub-areas 702 

B, C, and D is provided. A comparison between ECa maps and other available data such as 703 

morphometric data, historical maps, and historical aerial pictures was essential for the 704 

identification of these features and informed the interpretation that was necessary to conduct a 705 

proper supervised classification. 706 

 707 

To obtain geomorphic information, we used a digital elevation model (DEM) with spatial a 708 

resolution of 1 m (Scilands-GmBH, 2013). Additionally, anthropogenic features were considered 709 

in the overall interpretation since the area has been cultivated in the last centuries. Finally, the 710 

study area was a battlefield in WWII because the Rur river between Düren and Jülich represented 711 

a strategic defense line during the invasion of Germany by the Allied forces from December 1944 712 

to February 1945. This resulted in massive bombing runs on the city of Düren and the nearby 713 

defensive structures. Aerial pictures and historical maps were georeferenced and used to identify 714 

whether observed subsurface structures are associated with war activity. 715 

 716 

 In sub-area B, the EMI data consistently showed small areas of 1-2 ha with lower ECa compared 717 

to the surroundings.  The shape of these areas depends on the DOI (see Figure A1a-c for DOIs of 718 

75, 146 and 270 cm respectively) indicating that the presence of shallow structures was 719 

associated with the slope that characterizes sub-area B. The shape and the position of different 720 

structures along the slope allow a distinction between two regions with different genesis. The first 721 

structure (Type 1 in Figure A1a-c) was interpreted as a deposition of coarse material eroded from 722 

sub-area A when the channel system was not yet buried under aeolian sediments that led to the 723 
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formation of small fluvial fans. To support this interpretation, it was found that these features 724 

were adjacent to a paleochannel structure of sub-area A intersecting the boundary with sub-area 725 

B, and that the ECa pattern showed an elongated shape with low persistence with depth in their 726 

distal or proximal portions. The second structure (Type 2 in Figure A1a-c) was interpreted as a 727 

feature resulting from both natural and anthropogenic processes. First, shallow and slow 728 

movement has moved material from sub-area A to B. However, the observed feature is also 729 

related to recent anthropogenic soil management. It is known that the topography of the study 730 

area has been reshaped to facilitate agriculture with mechanized equipment (plowing, sowing and 731 

harvesting). In addition, the area of the lower Ruhr has been inhabited and farmed for about the 732 

last 7000 yrs. Thus, soil erosion since the beginning of arable farming has also contributed to 733 

relief flattening. 734 

 735 

Several other interesting features can be observed in the ECa values of sub-area C ( 736 

Figure A2). The shape of these structures is characterized by straight lines and approximately 737 

square polygons. These structures were characterized by lower ECa values compared to the 738 

surroundings and were interpreted as recent anthropogenic activity because of their distinct 739 

geometry. To identify the origin of these shapes, we compared the ECa map in  740 

Figure A2a with georeferenced aerial pictures and historical maps shown in  741 

Figure A2b and  742 

Figure A2c, respectively. From the aerial photo taken in November 1944 (USAAF, 1944), it can 743 

be concluded that these features were not related to defensive trench systems from WWII ( 744 

Figure A2b). Instead, historical maps suggest that these structures were associated with field 745 

boundaries, irrigation channels, and water ponds and reservoirs that were active at the end of the 746 

19th century or before ( 747 

Figure A2c). Similar geometries are also visible in older maps like the Tranchot map from 748 

Napoleon times dating back to between 1801 and 1809 (map not shown). The ECa and historical 749 
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maps do not perfectly match, but this could be expected given the limited precision of the older 750 

maps and the transient nature of such local water management structures. 751 

 752 

More indications for recent anthropogenic activity have been identified in field F39 of sub-area D 753 

(Figure A3). This area was characterized by various buried paleochannels, but it is also possible 754 

to identify one channel with a strong EMI response (Figure A3a). When comparing the EMI 755 

measurements with aerial photos from 1944 (USAAF, 1944) (Figure A3b), we identified a 756 

depression that probably corresponds to the remains of a small brook. The channel has been 757 

buried with anthropogenic sediments since 1944. The channel geometry matched with the higher 758 

ECa values obtained with EMI, and it was still apparent in the DEM where a topographic 759 

depression indicated the old position of the channel (compare Figure A3a, Figure A3b and Figure 760 

A3c). 761 

  762 
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Tables 946 

 947 

Table 1  EMI instrument configurations, coil separations, depth of investigation (DOI) and 948 

frequency for the CMD Mini Explorer and the CMD Mini Explorer - Special Edition. 949 

EMI instrument Receivers Orientation 

Separation 

[cm] 

DOI 

[cm] 

Frequency 

[kHz] 

Mini Explorer 3 VCP 32 0-24 30 

    VCP 71 0-53 

     VCP 118 0-89 

 Mini Explorer 6 HCP 35 0-52 25.17 

Special Edition    HCP 50 0-75 

     HCP 71 0-107 

     HCP 97 0-146 

     HCP 135 0-203 

     HCP 180 0-270 

  950 

 951 

Table 2 - 952 

with different coil configurations and separations for sub-areas A to D. 953 

  
Sub-Area 

D 

  

Sub-Area 

C 

  

Sub-Area 

B 

  

Sub-Area 

A 

Configuration Avg.    Avg.    Avg.    Avg.  

VCP 32cm 13.6 5.3 

 

16.1 5.8 

 

10.5 6.0 

 

8.7 4.0 

VCP 71cm 17.5 4.3 

 

22.0 4.8 

 

15.1 4.0 

 

10.6 3.2 

VCP 118cm 18.8 4.0 

 

24.5 4.6 

 

16.6 3.3 

 

11.4 3.1 

HCP 35cm 15.6 3.9   18.8 4.2   14.0 2.1   10.7 2.8 

HCP 50cm 16.5 3.3 

 

20.6 4.0 

 

14.7 2.2 

 

11.1 2.6 
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HCP 71cm 16.5 3.0 

 

21.2 3.7 

 

15.0 2.1 

 

10.9 2.2 

HCP 97cm 16.2 2.9 

 

21.6 3.1 

 

15.7 1.8 

 

12.2 1.8 

HCP 135cm 16.8 3.1 

 

23.1 3.4 

 

17.1 2.1 

 

12.2 1.9 

HCP 180cm 17.9 3.2   25.3 3.7   19.4 2.2   13.0 1.9 

 954 

 955 

Table 3  Average (Avg.) and Standard deviation ( ) of the measured ECa values (mS/m) 956 

obtained with the six HCP coil configurations in the four classes of sub-area A.  957 

 

A1a A1b A1c A1d 

Config. Avg.  Avg.  Avg.  Avg.  

HCP 035 12.5 2.9 10.8 2.3 9.6 2.3 8.3 1.9 

HCP 050 12.9 2.5 11.1 2.1 10.0 1.9 8.6 1.5 

HCP 071 12.5 2.2 10.9 1.6 10.0 1.6 8.8 1.3 

HCP 097 12.7 1.8 11.1 1.3 10.3 1.3 9.4 1.1 

HCP 130 12.7 1.8 11.1 1.4 10.3 1.3 9.9 1.2 

HCP 180 13.6 1.9 11.8 1.3 11.1 1.3 10.8 1.2 

 958 

 959 

Table 4 - Average (Avg.) and Standard deviation ( ) of the measured ECa values (mS/m) 960 

obtained with the six HCP coil configurations in the four classes of sub-area B. 961 

  B1a B1b B2a B2b B2c 

Config. Mean  Mean  Mean  Mean  Mean  

HCP 035 16.1 2.0 13.3 1.6 14.7 2.5 14.3 2.5 12.6 2.0 

HCP 050 16.9 2.2 14.2 1.9 15.5 2.4 14.9 2.2 13.2 2.1 

HCP 071 17.2 1.9 14.6 1.8 15.8 2.1 15.2 2.1 13.4 1.9 

HCP 097 17.7 1.6 15.4 1.0 16.6 1.7 15.8 1.7 14.0 1.5 
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HCP 130 19.4 1.7 17.0 1.3 18.0 2.1 17.3 2.3 15.1 1.9 

HCP 180 21.7 1.9 19.5 1.3 20.2 2.2 19.5 2.4 17.0 2.1 

 962 

 963 

Table 5 - Average (Avg.) and Standard deviation ( ) of the measured ECa values (mS/m) 964 

obtained with the six HCP coil configurations in the four classes of sub-area C. 965 

  C1a C1b C2a C2b 

Config. Mean  Mean  Mean  Mean  

HCP 035 20.0 4.0 18.3 3.8 19.6 4.9 19.0 4.0 

HCP 050 22.1 3.8 20.1 3.4 21.5 3.9 19.9 3.7 

HCP 071 22.7 3.6 20.8 3.1 21.6 3.3 19.8 3.4 

HCP 097 22.9 2.8 21.3 2.7 21.3 2.7 19.9 3.4 

HCP 130 24.5 3.1 22.8 2.8 22.8 2.9 20.7 3.2 

HCP 180 26.8 3.3 25.2 3.0 25.1 3.3 22.7 4.0 

 966 

 967 

Table 6 - Average (Avg.) and Standard deviation ( ) of the measured ECa values (mS/m) 968 

obtained with the six HCP coil configurations in the four classes of sub-area D. 969 

  D1a D1b D1c D1d D2 

Config. Mean  Mean  Mean  Mean  Mean  

HCP 035 17.4 3.0 15.7 3.6 12.3 2.1 11.1 2.1 21.0 1.9 

HCP 050 18.8 2.8 16.4 2.7 13.5 1.5 13.7 1.3 21.6 1.9 

HCP 071 19.0 2.7 16.4 2.4 13.7 1.4 12.6 1.3 20.8 1.4 

HCP 097 19.0 2.6 16.2 2.4 13.9 1.6 12.7 1.4 20.3 1.8 

HCP 130 19.7 2.8 16.6 2.3 14.0 1.2 13.1 1.4 19.8 1.9 

HCP 180 20.8 3.0 17.8 2.5 15.1 1.3 14.5 1.5 20.2 1.9 

 970 
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 971 

Table 7  True positive ratios (TPR), true negative ratios (TNR), and total percentage of correctly 972 

classified cells (TOT) resulting from the comparison with satellite image. 973 

 

TPR (%) TNR (%) TOT (%) 

F05 87.0 73.6 79.0 

F07 76.9 96.4 90.5 

F08 93.5 97.1 96.6 

F17a 89.6 62.7 70.4 

F22b 74.0 77.4 76.2 

F23 90.1 95.7 94.5 

F24 91.0 96.1 95.2 

F39 64.8 92.1 91.0 

F40 60.2 89.0 88.1 

F49 67.7 75.7 72.5 

Sub-area A 80.4 73.6 76.6 

Sub-area B 73.1 95.2 92.0 

Sub-area C ND 100.0 100.0 

Sub-area D 62.7 84.6 83.3 

1 x 1 km 77.9 89.0 87.2 

 974 

 975 

 976 

 977 

 978 

 979 

 980 

 981 
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List of Figures 982 

Figure 1. a) Satellite image of the study area (ESRI, 2016) with the measured fields and 983 

respective codes, b) 1:5000 soil map of the study area where the locations of the upper terrace 984 

(UT) and lower terrace (LT) are shown, c) digitized Soil Taxation Map (NRW, 1960) sheets 985 

510410 and 510411. 986 

 987 

Figure 2. Local sensitivity function for the nine coil separations in the VCP and HCP loop 988 

orientation with the separations that are shown in Table 1. 989 

 990 
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 991 

Figure 3. Flowchart of the supervised classification methodology. 992 

 993 

 994 

Figure 4. Multiband raster image from the ECa interpolation maps on F05. The 6 bands are the 6 995 

coil distances in HCP configuration of the CMD Mini Explorer  Special Edition.  996 

 997 
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Figure 5. ECa maps of the six HCP configurations: a) HCP 35 cm with lines from the 1:5,000 soil 998 

map, b) HCP 50 cm with lines from the soil taxation map, c) HCP 71 cm with subdivision of the 999 

study area in four geomorphological sub-areas A, B, C, and D, d) HCP 97 cm with evidence of 1000 

buried irrigation channels and water ponds (dashed line), e) HCP 118 cm, f) HCP 180 cm. 1001 

 1002 

 1003 

 1004 

 1005 

 1006 

 1007 

 1008 
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Figure 6. a) Variation in ECa between fields measured within 24h  on August the 25th 2016, b) 1009 

variation in ECa between fields measured at different times (measurement dates given after field 1010 

abbreviation). 1011 

 1012 

 1013 

 1014 

 1015 

 1016 
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Figure 7. a) ECa map of the HCP 97 cm configuration in sub-area A, b) classified ECa map of 1017 

sub-area A with the locations of the ground truth points, c) averaged soil profiles for each of the 1018 

four classes with a description of the statistically significant differences in texture and layers 1019 

depth between classes A1a-A1b, A1b-A1c, and A1c-A1d. Note that the ECa scale for panel a) 1020 

differs from the one in Figure 5 to improve visualization. 1021 

 1022 

 1023 

 1024 

 1025 

 1026 

 1027 

 1028 

 1029 

 1030 
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Figure 8. a) ECa map of the HCP 97 cm configuration in sub-area B, b) classified ECa map of 1031 

sub-area B with the locations of the ground truth points, c-d) averaged soil profiles for each of the 1032 

four classes with a description of the statistically significant differences in texture between 1033 

classes B1a-B1b, B2a-B2b, and B2b-B2c.  1034 

 1035 

 1036 

 1037 

 1038 

 1039 

 1040 

 1041 
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Figure 9. a) ECa map of the HCP 97 cm configuration in sub-area C, b) classified ECa map of 1042 

sub-area C with the locations of the ground truth points, c-d) averaged soil profiles for each of the 1043 

four classes with a description of the statistically significant differences in texture and layers 1044 

depth between classes C1a-C1b and C2a-C2b. 1045 

 1046 

 1047 
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Figure 10. a) ECa map of the HCP 97 cm configuration in sub-area D, b) classified ECa map of 1048 

sub-area D with the locations of the ground truth points, c) averaged soil profiles for each of the 1049 

four classes with a description of the statistically significant differences in texture and layers 1050 

depth between classes D1a-D1b, D1b-D1c, and D1c-D1d. 1051 

 1052 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 
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Figure 11. a) Satellite image (ESRI, 2016) of the study area with highlights on the fields cropped 1060 

with sugar beet, b) digitized patterns in crop stress in F05 ( F07 shown in e), c) comparison 1061 

between classified map and patterns in crop stress on F05 (F07 shown in f), d) correctly classified 1062 

cells (green) and incorrectly classified one (red) on F05 (F07 shown in g). 1063 

 1064 

 1065 

Figure A1. Shallow structures of type 1 and 2 visible along the slope in sub-area B. The 1066 

interpolated ECa values are shown for a) HCP 49cm, b) HCP 97cm, and c) HCP 180cm. 1067 

 1068 

 1069 

 1070 
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Figure A2. Geometry of anthropogenic features highlighted by a) ECa maps with HCP 97cm 1071 

configuration compared with b) aerial photo from 19th November 1944 and c) historical map 1072 

from 1881-1912 (NRW, 2017). 1073 

 1074 

 1075 

Figure A3. a) ECa maps for HCP 97 cm configuration highlighting a buried structure with a 1076 

strong EMI response, b) aerial picture from 19th of November 1944 (USAAF, 1944), and c) DEM 1077 

with 0.5 m spaced contour lines. 1078 

 1079 


