Large-scale soil mapping using multi-configuration EMI and supervised image

classification

C. Brogi®, J. A. Huisman®, S. Piitzold®, C. von Hebel?, L. Weihermiiller®, M. S. Kaufmann?, J. van
der Kruk®, H. Vereecken®.

* Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jiilich, Germany

b University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Division

Soil Science, Bonn, Germany

Corresponding author: Cosimo Brogi

c.brogi @fz-juelich.de




10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Abstract

Reliable and high-resolution subsurface characterization beyond the field scale is of great interest
for precision agriculture and agro-ecological modelling because the shallow soil (~1-2 m depth)
is responsible for the storage of moisture and nutrients that are accessible to crops. This can
potentially be achieved with a combination of direct sampling and Electromagnetic Induction
(EMI) measurements, which have shown great potential for soil characterization due to their non-
invasive nature and high mobility. However, only a few studies have used EMI beyond the field
scale because of the challenges associated with a consistent interpretation of EMI data from
multiple fields and acquisition days. In this study, we performed a detailed EMI survey of an area
of 1 km? divided in 51 agricultural fields where previous studies showed a clear connection
between crop performance and soil properties. In total, nine apparent electrical conductivity
(ECa) values were measured at each location with a depth of investigation ranging between 0-0.2
to 0-2.7 m. Based on the combination of ECa maps and available soil maps, an a priori
interpretation was performed and four sub-areas with characteristic sediments and ECa were
identified. Then, a supervised classification methodology was used to divide the ECa maps into
areas with similar soil properties. In a next step, soil profile descriptions to a depth of 2 m were
obtained at 100 sampling locations and 552 samples were analyzed for textural characteristics.
The combination of the classified map and ground truth data resulted in a 1 m resolution soil map
with eighteen units with a typical soil profile and texture information. It was found that the soil
profile descriptions and texture of the EMI-based soil classes were significantly different when
compared using a two-tailed #-test. Moreover, the high-resolution soil map corresponded well

with patterns in crop health obtained from satellite imagery. It was concluded that this novel EMI



25  data processing approach provides a reliable and cost-effective tool to obtain high-resolution soil
26 maps to support precision agriculture and agro-ecological modelling.
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1. Introduction

The demand for reliable high-resolution soil maps at scales larger than the field-scale is of great
interest for precision agriculture and agro-ecological modelling because local differences in
shallow soil properties (~1-2 m max depth) are known to influence soil water movement and
retention, nutrient availability, and root growth. Various thematic maps may provide information
on soil characteristics (e.g., geological, soil, and yield potential maps). However, these available
maps typically do not have the required resolution to support the identification and management
of within-field differences in crop performance (Franzen et al., 2002; Nawar et al., 2017),

because they are based on sparse and time consuming direct soil sampling.

Hydrogeophysical methods provide a viable alternative to point-scale direct sampling (Robinson
et al., 2008). In particular, electromagnetic induction (EMI) measurements have shown promise
to characterize spatial variability in soil properties because of its high mobility (Robinson et al.,
2012; van Dam, 2012). EMI measures the apparent electrical conductivity (ECa) of the ground,
which can be related to soil water content, pore water conductivity, soil porosity, and soil texture

(Corwin and Lesch, 2003; Sheets and Hendrickx, 1995).

At the field-scale (~1-10 ha) and beyond, a range of studies successfully used EMI for mapping
relevant soil properties, such as the variation in soil texture and layering (Cockx et al., 2007;
Kelley et al., 2017; Mertens et al., 2008), soil salinity (Huang et al., 2017a; Yao et al., 2016), soil
water dynamics (Huang et al., 2017b), organic matter (Huang et al., 2017c), and CEC (Machado
et al., 2015). In addition, EMI has been used to quantitatively link ECa, soil characteristics, and

crop performance during periods of water stress (Rudolph et al., 2015). Despite these promising



52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

results, the vertical resolution of soil characteristics obtained from EMI measurements was low in
most studies. Recently, new EMI instruments with multiple coil separations and orientations have
been introduced that provide improved vertical resolution, but they have not been widely used for

soil characterization yet (von Hebel et al., 2014).

EMI measurements are also used for soil characterization at scales larger than the field-scale (>
10 ha) (e.g., Ding and Yu, 2014; Frederiksen et al., 2017; Zare et al., 2016). So far, EMI
measurements were performed in a limited time-window in such large-scale studies, thus
minimizing temporal variations in dynamic soil characteristics within the EMI survey (e.g. water
content and soil temperature) (Frederiksen et al., 2017). However, this may not be feasible in
complex agricultural areas where multiple fields are managed with different crops with variable
harvest times. In such cases, it is expected that the spatial variation in ECa is difficult to interpret

in terms of a single soil property.

In the absence of direct correlations between EMI measurements and a single soil property, a
range of studies have used clustering or classification of EMI data to identify zones with similar
properties. For example, clustering of ECa maps has been widely used to identify management
zones that can be treated homogeneously within precision agricultural applications. Most of such
studies relied on a combination of EMI measurements, direct soil sampling, and yield maps (e.g.,
Galambosova et al., 2014; King et al., 2005; Oldoni and Bassoi, 2016; Taylor et al., 2003;
Uribeetxebarria et al., 2018). Some studies also considered other proximal and remote sensing
techniques in addition to EMI to identify management zones such as ground penetrating radar,
gamma-ray spectrometry, and hyperspectral airborne and satellite images (Castrignano et al.,

2012; Ciampalini et al., 2015; De Benedetto et al., 2013; Huang et al., 2014; Jing et al., 2017;
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Triantafilis et al., 2009). However, the majority of studies dealing with clustering of EMI data

was focused on the field-scale and used only a single or limited number of EMI configurations.
The applicability and utility of clustering EMI data to identify areas with similar soil properties
have not been demonstrated yet for large-scale multi-configuration EMI data sets consisting of

EMI measurements taken at different times and for a range of investigation depths.

In this study, we focus on an agricultural area of 1.0 km? near Selhausen (North-Rhine
Westphalia, Germany) characterized by complex patterns in soil properties that are known to
affect crop performance. These observed patterns in crop performance are not captured in detail
by available soil maps. Therefore, the objective of this study is to obtain a high-resolution soil
map with a detailed and quantitative representation of horizontal and vertical variability of soil
properties from an extensive multi-configuration EMI survey that was carried out throughout the
year 2016. For this, a supervised classification methodology adapted from remote sensing will be
used to identify areas with similar soil properties from multi-configuration EMI data, and a
limited number of ground-truth points will be used to obtain soil profile and texture information
for each of these areas. Statistical analysis will be used to evaluate whether soil properties are
significantly different between these areas. In a final step, the ability of the high-resolution soil
map to capture patterns in plant stress will be evaluated using a comparison with crop

performance patterns obtained from satellite images.

2. Materials and methods

2.1 Study area
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The study was conducted in an agricultural area near Selhausen (Germany). It is located in the
Rur Catchment (North-Rhine Westphalia) approximately 40 km west from Cologne (50°51°56”N
6°27°03”E). The shape of the study area is a square of 1x1 km bearing 12.75° east (Figure 1).
The climate is characterized by an average precipitation of 715 mm and a mean annual
temperature of 10.2°C (Rudolph et al., 2015). The altitude ranges between approximately 101 m

and 113 m a.s.l.

The shallow geology consists of quaternary sediments divided in two main geological areas: the
upper terrace and the lower terrace. According to the 1:5,000 soil map of this area (Figure 1b),
the upper terrace in the eastern part consists of Pleistocene sand and gravel sediments associated
with the Rhine/Meuse river system (Rohrig, 1996). It is characterized by a system of subsurface
channels filled and buried by aeolian sediments of variable thickness (Klostermann, 1992;
Patzold et al., 2008; Vandenberghe and Van Overmeeren, 1999). The lower terrace in the western
part consists of Pleistocene loess sediments and translocated loess sediments from the Holocene
(Figure 1b). Similar to the upper terrace, part of the translocated loess of the lower terrace is
deposited on Pleistocene/Holocene sand and gravel sediments (Rohrig, 1996). The two terraces
are separated by a slope that ranges from 2% to 10% with a westbound dip and an approximately

NNW-SSE strike.

The dominant reference soil groups in the area are Cambisols, Luvisols, Planosols, and
Stagnosols (WRB, 2015). The area is divided into 51 fields ranging in size from 0.5 to 10.0 ha.
The fields are cultivated in rotation with winter wheat, barley and sugar beet. Occasionally

potato, maize, oilseed rape, and oats are grown. According to the German cadaster, there are 52



124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

different land owners but the effective number of farmers is lower than twenty because of kinship

and lease. The large number of active farmers leads to a heterogeneous field management.

Previous studies highlighted the influence of subsurface heterogeneity on crop performance in
several fields located on the upper terrace (Rudolph et al., 2015; Simmer et al., 2015; Stadler et
al., 2015). This is illustrated in a satellite image from a drought period (Figure 1a) where patterns
in crop performance are visible in the upper terrace (fields Fl14a, F17a, F22b, F23, F24a-b, F47,
and F49 in Figure 1a). Similar patterns are visible in the lower terrace, but these have not been

studied yet (fields F39 and F40 in Figure 1a).

Figure 1c presents the soil taxation map (NRW, 1960) of the study area (sheets 510410 (west)
and 510411 (east)). This map shows the yield potential of the agricultural land at the scale of
1:5,000 and provides soil profile information up to a depth of 1.0 meter. In general, this map is
more detailed than the 1:5,000 soil map and represents the most detailed available soil
information for the selected study area. However, it is not capable of representing the complexity
of the subsurface for this particular study area. This is evident from a comparison with the
observed patterns in crop performance shown in Figure 1a. The lack of detail in the soil taxation

map is mainly due to the low sampling density of one drilling per 40-50 m used during mapping.

2.2 Electromagnetic Induction (EMI) measurements

Frequency domain EMI systems generate a fixed frequency alternating current through a
transmitter coil, which generates the primary magnetic field. This primary magnetic field induces

eddy currents in the electrically conductive subsurface, which in turn generate a secondary
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magnetic field. The ratio between the secondary and primary magnetic field is related to the
apparent electrical conductivity (ECa) and, to a lesser degree, to the apparent magnetic
permeability over a certain depth range that depends on the source-receiver coil distance and

orientation (Keller and Frischknecht, 1966; Ward and Hohmann, 1988).

2.2.1 EMI instrumentation

In this study, we simultaneously used the CMD-MiniExplorer (ME) with three receiver coils and
coil separations of 32, 71, and 118 cm oriented in vertical coplanar configuration (VCP) and a
custom-made CMD-MiniExplorer - Special Edition (SE) with six receiver coils and coil
separations of 35, 50, 71, 97, 135, and 180 cm (GF instruments, Brno, Czech Republic) oriented
in horizontal coplanar configuration (HCP) to collect data using both VCP and HCP

configurations at the same time (Table 1).

Figure 2 shows the depth-specific sensitivity of all EMI measurements in VCP and HCP
orientation to the subsurface electrical conductivity distribution (McNeill, 1980). The VCP
orientation is most sensitive to the shallow subsurface and becomes less sensitive with increasing
depth, while the HCP orientation is less sensitive to the shallow subsurface and the sensitivity
peaks at a depth of around 0.4 times the coil separation (McNeill, 1980). As a rule of thumb, the
depth of investigation (DOI) for VCP is approximately 0.75 times the coil separation (s) and the
DOI for HCP is approximately 1.5 times the coil separation. This result in DOI’s ranging from 0O-

24 to 0-270 cm for our measurements set-up.

2.2.2 EMI survey
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The EMI measurements on the 51 agricultural fields (102 ha) shown in Figure 1a were performed
between April and December 2016 within a few days after harvest of the different crops. For each
field, a standardized measurement protocol based on best practice EMI measurements was
followed (European Committee for Standardization, 2011). The EMI instruments were mounted
on two plastic sleds that were separated by 1.5 m. A quad-bike was used to pull the sleds while
keeping a distance of 4 m from the first sled. The driving speed ranged from 5 to 7km/h. The
sampling frequency was 5 Hz, which resulted in an in-line resolution of approximately 0.3 m
with a track spacing of 2.0 to 2.5 m. The EMI measurements were made in the direction of

ploughing to avoid possible effects of terrain roughness on the EMI measurements.

A single frequency GPS (NovAtel inc., Calgary, Canada (see Rudolph et al., 2018)) was used to
provide spatial position during the measurements from April to October 2016 (a total of 76 ha).

A TRX centerpoint DGPS system (Trimble inc., Sunnyvale, USA) with higher accuracy was used
from November to December 2016 for a total of 21 ha. Despite the difference in accuracy
between the single frequency GPS system (meter accuracy) and a DGPS system (cm accuracy),
we considered the measurements obtained with the two GPS systems as equally reliable for the
purpose of this study. Each field was measured continuously and the first line of EMI
measurements was repeated at the end of each field survey to verify that no unexpected shifts in
the measured ECa occurred. In general, the difference in ECa values measured at the start and at

the end of each survey was negligible.

2.2.3 Data filtering and interpolation

10
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The CMD-MiniExplorer and the CMD-MiniExplorer Special Edition have been factory-
calibrated using the supplied handle (i.e., a crutch). Therefore, it is not necessary to perform in-
field zeroing. Both devices also internally compensate for temperature changes during a survey
with a stability of 0.1 mS/m per °C (GF_Instruments, 2011). Nevertheless, negative ECa values
were measured in this study as already observed in previous studies (Rudolph et al., 2015; von
Hebel et al., 2014). Some studies have therefore calibrated the ECa measurements with
independent electrical resistivity tomography (ERT) data (Lavoué et al., 2010; Shanahan et al.,
2015) in order to obtain quantitative EMI data that allow inversion (Mester et al., 2011; von
Hebel et al., 2014). Alternatively, calibration can be achieved using a metal sphere or by
measuring at multiple elevations (Tan et al., 2018; Thiesson et al., 2014). Since repeated
calibration is difficult to achieve for the EMI survey presented here, we applied a correction
based on a linear regression between EMI measurements made with the sled and the supplied
handle for each EMI coil configuration. In this approach, it is assumed that the required
calibration of each EMI coil configuration is relatively stable in time, which is consistent with

our experience with EMI calibration.

Since measured ECa values are rarely normally distributed (Minsley et al., 2012), we applied an
histogram-filtering technique following von Hebel et al. (2014) to identify and exclude outliers.
The filter divides the data into 15 bins. Bins containing <0.5% of the data were removed.
Afterwards, neighboring ECa measurements that showed differences larger than 1 mS/m were
removed to avoid unrealistically high lateral ECa variation. In a next step, the filtered data of
each coil configuration were interpolated to a regular 1 by 1 m grid using ordinary Kriging with
an exponential semivariogram. The individual interpolated surfaces for each coil configuration

were merged together in a raster mosaic dataset.

11
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2.2.4 Temperature correction

To standardize the EMI data to a reference temperature of 25°C, we performed a correction for

soil temperature using the approach of Campbell et al. (1949).

EC?® = frECT, (1)

where ECa’ is the ECa measured at soil temperature T and f7 is a temperature correction factor

given by

fr = 0.4470 + 1.4034¢T/26815 o

as proposed by Sheets and Hendrickx (1995), corrected by Corwin and Lesch (2005) and used in
many time lapse EMI studies (e.g. Robinet et al., 2018). The average soil temperature between 8
AM and 8 PM at all measurement days was obtained by averaging the measurements from three
soil temperature sensors installed in field F10 at a depth of 0.5 m. The minimum soil temperature
was measured on the 5™ of December (4.7°C when field F50 was measured), while the highest
temperature was measured on 15" of September (20.8°C when fields F38 and F39 were
measured). It is important to realize that this temperature correction will not be able to overcome
all differences in mean ECa between fields, since EMI data were acquired in different seasons

and after different agricultural management (e.g., type of crop, timing of fertilization).

2.3 Classification of ECa maps
12
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A flowchart of the classification methodology including aspects of preprocessing as well as the
selection of sampling locations for ground truth data is shown in Figure 3. The following
analyses were performed using ArcGIS Desktop software. The first step of the classification was
to merge the EMI measurements obtained with the six coil separations in the HCP orientation.
For this, we used a raster processing composite band tool (ESRI, 2017) to generate a multiband
raster dataset, where HCP coils with increasing separation represent the different bands (

Figure 4). We decided not to add the VCP configurations to the multiband image because the
stronger sensitivity to shallow layers resulted in higher noise and because the relatively
homogeneous ploughing horizon of ~30 cm thickness resulted in relatively constant ECa values
within each single field for these configurations. However, the EMI measurements in VCP mode

will be used in the following to support the interpretation of the EMI data.

To classify the multiband raster data, a supervised classification method was used. In a first step,
the number of soil classes and their interpretation need to be defined. For this interpretation,
information contained in the nine ECa maps, the soil map, the soil taxation map, as well as expert
knowledge from previous studies and field observations were taken into account. As a result of

this interpretation process, the amount and type of soil classes is known for each field.

In a next step, the multiband raster of EMI data was used to classify the survey area field-by-
field. This was necessary because EMI data were found to vary between fields due to other
factors besides soil properties (see results section for a more detailed analysis of this variability).
For each field, areas belonging to a specific soil class were identified within the multiband raster
data (so-called training areas). This was achieved by visualizing different combinations of EMI
coil separations displayed with RGB composite colors (see

Figure 4 for one possible example). After the training areas were selected for each soil class,

histograms of ECa values for each class and band as well as scatter plots of ECa values for all

13
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classes for different combinations of bands were used to evaluate the distribution and separation
of the classes in the six-dimensional space of the measured ECa values. When it was not possible
to achieve a proper separation of the clusters in all fields using the given number and
interpretation of classes, then the interpretation was reviewed and the process was repeated until a

proper cluster separation was achieved on all fields.

After defining the training areas for a given field, a Maximum Likelihood classification (ESRI,
2017) was used to classify all raster cells of a field. For this, the mean and the covariance matrix
of the training areas were calculated (Ball and Hall, 1965; ESRI, 2014; Richards, 1999). Based on
this, the statistical probability that a particular cell belongs to each class was calculated and the
cell was assigned to the class with the highest probability. After this classification, a raster map

of the field is obtained where every cell is assigned to the most probable class.

After the classification of each field, the results were merged together to obtain one classified
map of the whole study area. Next, two filtering procedures were applied to remove small areas
characterized by a single or few cells as well as to smooth the boundaries between different
classes. First, a majority filter (ESRI, 2017) was used to replace cell values based on the value
that occurs most often within the eight neighboring cells. This replacement occurred only when
the number of neighboring cells from the same soil class is large enough to be the majority (e.g. 5
out of 8 cells) (ESRI, 2014). Second, a boundary clean filter (ESRI, 2017) relying on an expand-
and-shrink method in order to clean the boundaries from ragged edges between different soil
classes was used. A sorting based on the size of different zones represented by a single class was

applied to facilitate the expansion of large zones over small ones (ESRI, 2014).
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2.4 Soil sampling for ground truth information

Based on the final map obtained from the classification of EMI data, 100 soil augering locations
were selected where soil profile descriptions and soil samples were acquired. The sampling
points were distributed amongst all the soil classes and the number of points per soil class was
based on the total area of the soil class itself with a minimum of three sampling locations per soil
class. For each of the 100 points, a random location within the assigned class was determined.
Each location was at least 2.5 m away from the boundary between two soil classes. Also,
locations within the same soil class were separated by at least 150 m. In January and February
2017, all locations were visited using a DGPS system (Trimble inc., Sunnyvale, USA) and a

Piirckhauer auger was used to sample and describe the soil up to a maximum depth of 2.0 m.

The maximum augering depth at each location varied considerably because of the presence of
horizons with high gravel content or strong cementation. For each sampling location, a soil
profile description was obtained with information on horizon type, horizon thickness, total depth,
and color. To delineate horizons in the field, texture was estimated by feel (“hand texturing”)
(Sponagel et al., 2005; Vos et al., 2016). For each horizon, at least one soil sample was collected.
When layers with different texture were identified in a single horizon, multiple samples were
collected. All soil samples were stored in a refrigerated room until the gravimetric water content
was estimated by drying the sample at a temperature of 105°C for 36 hours. The weight fraction
of gravel (> 2 mm) was determined using sieving. Afterwards, the texture of each sample was
analyzed with a combined sieving and pipette method using a Sedimat 4-12 apparatus (UGT,

Umwelt Geridte Technik GmbH, Miinchenberg, Germany).
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The soil profiles of all ground truth locations within a single soil class were averaged to obtain a
typical soil profile with information on horizon type, depth, texture, and gravimetric water
content for that particular class. To compare different soil classes, the soil classes were ordered
according to decreasing average ECa. Two tailed 7-tests were performed between matching
horizons of two adjacent soil classes to establish whether there are statistically significant
differences. For this statistical analysis, the horizons Ap and AB were considered as a single
horizon. The null-hypothesis of equal means in the #-test was rejected when the computed #-value

was higher than the 5 % level of significance (2.5 % in each tail).

2.5 Comparison with satellite image

To test the potential of the EMI-based soil map to identify areas with variable crop growth, we
compared it with observed field-scale patterns in crop growth derived from remote sensing. For
this, we used a WorldView-2 panchromatic satellite image with 0.5 m resolution provided by
DigitalGlobe within ArcGIS Basemap (ESRI, 2016). The image was collected during a drought
period in July 2015 (Figure 1a). Here, we analyze a set of fields that were cropped with sugar
beet in 2015 (FO05,F07, FO8, F17a, F22b, F23, F24, F39, F40 and F49) since sugar beet is known
to show visual signs of drought stress in this area (Rudolph et al., 2015). In each of the sugar beet
fields, areas with relatively stressed crops (light green) and areas with relatively healthy crops
(dark green) were manually digitized on the satellite image.

In order to quantify the correspondence between each class of the soil map and the crop
performance derived from the satellite image, the number of cells located on stressed and healthy
crops was determined for each class of the soil map for each field. If more than 50% of the cells

of a soil class for a particular field were stressed crops, the soil class was assumed to correspond

16
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with stressed conditions (and vice versa). The correspondence of each soil class with the satellite
image was quantified using the true positive ratio (TPR), which is the fraction of cells correctly
classified as being stressed, and the true negative ratio (TNR), which is the fraction of cells
correctly classified as healthy crops. Due to these definitions, TPR and TNR can range from 50 to

100%.

3. Results and discussion

3.1 Large-scale EMI survey

The ECa maps presented in Figure 5 show that the study area can be divided in four sub-areas
(Figure 5c), each with characteristic sediments and ECa values and patterns. This subdivision was
performed by comparing the patterns in ECa maps (Figure Sa-f) and their general ECa values
(Table 2) with the geometry of the soil map (Figure 5a) and, to a lesser degree, of the soil
taxation map (Figure 5b). Here, it is assumed that the soil maps provide reliable information on
the type and origin of the sediments, albeit with a low resolution because of the lower density of
the ground truth information used to create the maps. Therefore, the joint interpretation of ECa
maps (horizontal geometry) and soil maps (type and origin of sediments) results in a more
reliable subdivision of the study area. From east to west, the following sub-areas were identified:
a buried paleochannel system on the upper terrace (sub-area A in Figure 5c), a transition zone
associated with a slope heading N-S (sub-area B in Figure 5c¢), a relatively homogeneous area in
the center (sub-area C in Figure 5c¢), and a second heterogeneous area in the west (sub-area D in

Figure 5c¢). In the following, the ECa maps from these four sub-areas are discussed in more detail.
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Sub-area A was partly studied by Rudolph et al. (2015), and is characterized by relatively low
ECa values compared to the rest of the study area (Table 2). The geometry of this sub-area agrees
well with the Pleistocene loess deposits on sand and gravel described in the soil map (Figure 1b).
Therefore, it is assumed that the entire sub-area A is characterized by paleochannels cut in sandy-
gravel material and then filled by finer loess sediments. These paleochannels are characterized by
a relatively higher ECa because of the larger thickness of the loess sediments with higher silt and
clay content and higher water storage capacity (Rudolph et al., 2015). The average ECa generally
increased with DOI for both VCP and HCP coil configurations (Table 2). However, the range of
ECa values is relatively small, especially when compared to the rest of the study area. A
geomorphological interpretation of the pattern of buried channels indicates that the stream type

was an anastomosing fluvial system with multiple channels (Rosgen, 1994).

The transition zone represented by sub-area B coincides with the slope that strikes N-S across the
study area. The morphology of the area, the soil map description (Pleistocene loess sediments),
and the patterns in the ECa maps suggest the presence of Holocene slope deposits located on
Pleistocene loess sediments. Some of these deposits are partly anthropogenic since the slope has
been repeatedly flattened to facilitate agricultural management. A more detailed description of
the geomorphology of this sub-area is provided in Appendix A. In general, the ECa values
increase with DOI for both VCP and HCP configurations and they are higher compared to sub-
area A (Table 2). The increase of ECa with DOI is most pronounced for the deeper sensing
configurations (HCP with 130 cm and 180 cm coil separation). This is probably related to the

presence of fine sediments in the deeper layers compared to the shallow surface.
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The ECa values in sub-area C also showed a general increase with DOI and were relatively
higher when compared to the other three sub-areas (Table 2). This area was previously described
as a homogeneous lower terrace using measurements in VCP and HCP configuration with a
small offset (Rudolph et al., 2015). The soil taxation map (Figure 1c) describes this area as
relatively homogeneous with loamy sediments, while the soil map (Figure 1b) indicates
Pleistocene loess and translocated loess. The higher ECa values in sub-area C suggest the
presence of soils and sediments with higher clay content. The remains of irrigation channels and
water ponds are visible in the ECa maps of this sub-area (Figure 5d), and these features are

described in detail in Appendix A.

The heterogeneous sub-area D was measured for the first time with EMI in this study. Generally,
the average ECa values again increased with DOI both for the VCP and for the HCP coil
configurations. The pattern visible in the ECa map (Figure 5) suggests that the subsurface of sub-
area D is also characterized by a buried fluvial system and that the paleochannels are again
characterized by a relatively higher ECa.. However, the different geometry of the buried channels
and the higher ECa values suggest a different type of fluvial activity. This is corroborated by the
soil map that indicates translocated loess sediments on sand and gravels (Holocene-Pleistocene).
Furthermore, the buried channels are straighter and wider compared to sub-area A. Likely, the

depositional environment was closer to a braided fluvial system (Rosgen, 1994).

3.2 Heterogeneity at the field-scale
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Besides the large-scale patterns in ECa values, field-scale variability in ECa values is also
apparent. For example, fields FO8 and field F24a-b were managed differently before the EMI data

acquisition that took place on the same day (

Figure 6a). Field FO8 and field F24a were cropped with wheat by two different farmers, while
field F24b was cropped with barley. Therefore, it is assumed that the observed differences in ECa
for field FO8 and field F24a-b are related to the different management that has resulted in
different soil water content or different pore water conductivity at the time of data acquisition.

Similarly,

Figure 6b shows variations in ECa values between adjacent fields that were not measured at the
same time. As in the previous case, part of the observed variation is related to differences in field
management. More importantly, there are differences due to the variable amount of precipitation
in the days before data acquisition, which obviously affects soil water content and thus ECa

values.

Although these two examples illustrate that variable management and timing of EMI data
acquisition affected the ECa maps, it can be seen that the characteristics of the subsurface in
terms of layering and texture are still identifiable, since a range of features that cross the field

boundaries are apparent (
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Figure 6b). Here, it is important to emphasize that the adopted approach for ECa correction
(calibration and temperature) was not expected to correct these differences in ECa between fields,
since they are likely related to variations in soil water content and pore water conductivity. To
overcome this secondary variability in ECa as much as possible, it was required to apply the

classification methodology to each field independently.

3.3 Definition of the classes

After subdividing the study area in four different sub-areas, it was assumed that the soils in each
sub-area are different because of the different type and age of the sediments. Further subdivision
within each sub-area was performed prior to the classification of each field.

In sub-area A, the best distribution and separation of the clusters in the six-dimensional space
provided by the EMI data in the multiband raster was achieved by using four soil classes, which
are named Ala, Alb, Alc, and Ald in the following. These soil classes showed a general

decrease in ECa from class Ala to Ald (Table 3).

In sub-area B, an appropriate separation of clusters was obtained using a total of five soil classes
divided in two groups: two soil classes representing natural soils (Bla and B1b) and three

representing anthropogenic soils (B2a, B2b, and B2c). Generally, ECa was higher in natural soils
compared to anthropogenic soils (Table 4). Moreover, ECa decreased from soil class Bla to B1b

and from soil class B2a to B2c (Table 4).

In sub-area C, a clear subdivision can be made between anthropogenic soils (Figure 5d) and the

surrounding natural soils. The anthropogenic soils were divided in buried irrigation channels
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(class C2a) and buried water ponds (class C2b, Table 5). These soil classes were manually
determined in the multiband raster because of their evident geometry (Figure 5d and Appendix
A) and subsequently removed from the multiband image to avoid any influence in the
classification process. The remaining area of sub-area C is apparently homogeneous according to
the 1:5000 soil map and the soil taxation map (Figure 1b-c). However, the range of ECa (e.g.,
from 9.2 to 35.1 mS/m in HCP 35 cm and from 13.8 to 34.2 mS/m in HCP 180 cm) suggested

further subdivision and the use of two soil classes Cla and C1b with different ECa (Table 5).

In sub-area D, the best distribution and separation of clusters was provided by using five soil
classes. The four soil classes D1a, D1b, Dlc, and D1d represent natural soils, and soil class D2a
represents an anthropogenic structure in field F39. The ECa of soil class D2a was highest, then

the ECa decreased from soil class D1a to D1d (Table 6).

Using these classes, the multiband ECa image of each field was classified. This resulted in a high

resolution soil map composed of four sub-areas divided in a total of 18 soil classes. In the

following, the results for each sub-area are presented separately to facilitate the description and

the understanding of the high resolution soil map obtained by combining the classification results

with the ground truth sampling.

3.4.1 Classified ECa map of sub-area A

The results of the supervised classification of sub-area A are shown in
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Figure 7b while the average soil profiles of each soil class are shown in

Figure 7c. The soil profiles of each soil class are richer in fine sediments (clay and silt) in the Ap-
AB, and Bw horizons characterized by Aeolian sediments. The deeper horizons consisted of
coarser sediments composed of Pleistocene sand and gravels. The average ECa for each
configuration decreased from soil class Ala to class Ald (Table 3). This may be due to the

decreasing maximum depth of the Bw horizon that consists of finer sediments (

Figure 7c). A pairwise t-test between neighboring soil classes indicated that this maximum depth
was significantly different only between classes Ala and Alb (p = 0.040). However, the textural
data showed a significant difference (p = 0.031) in gravel content between the Ap-AB horizon of
soil class Alb (16.7 %) and Alc (29.8 %). In addition, the clay content of the AP-AB horizon in
class Alc (14.4 %) was significantly higher (p = 0.034) than that of class Ald (12.9 %).These
textural characteristics are in agreement with the decreasing average ECa from soil class Alb to
Ald. The average texture of all soil profiles for sub-area A-D and the results of all pairwise ¢-

tests within each sub-area are provided in the supplementary information.

3.4.2 Classified ECa map of sub-area B

The results of the supervised classification of sub-area B are shown in Figure 8b and the average
soil profiles are shown in Figure 8c-d. Compared to sub-area A, the soil profiles in this sub-area

generally have a Bg horizon below the Bw horizon. Moreover, the 2C horizon consisting of
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coarse sediments that is common in sub-area A was found only in one of the five soil classes of

sub-area B. An Ap-AB horizon was always found on top of each profile.

Table 4 shows that the average ECa is higher in soil class Bla compared to B1b. Together with
the presence of the 2C horizon in soil class B1b, this suggests that B1b represents areas in which
the 2C horizon, typical of sub-area A, is present below slope deposits. Although there were no
significant differences in horizon depth between class Bla and B1b, we did observe significant
differences in texture as indicated in Figure 8c. The most evident was the higher clay content of
the Ap-AB, Bw, and Bg horizons of class Bla (15.9 %, 17.3 %, and 22.5 % compared to 12.3 %,
16.4 % and 18.1 % with p = 0.005, p = 0.006, and p = 0.002). In addition, the sand content of the
Ap-AB and Bg horizons of class Bla was lower than in B1b (15.1%, and 12.8 % compared to
19.2 %, and 17.8 % with p = 0.002, and p = 0.012). Again, these textural differences are
consistent with observed differences in ECa. In contrast with the decrease in average ECa, the
gravel content of the Bg horizon of soil class Bla was significantly higher than that of class B1b
(12.8 % compared to 1.6 %, p = 0.014). However, we assume that this difference in gravel
content is secondary given the aforementioned differences in textural characteristics and layering

of these two classes.

Soil classes B2a, B2b, and B2c are characterized by anthropogenic deposits in the first ~70-95
cm of the profile. The profiles of classes B2a and B2b are relatively similar, and no significant
differences were found in horizon depth. Again, the texture showed meaningful differences. The
clay content of the Ap-AB horizon of class B2a was significantly higher than that of B2b (15.1 %
compared to 12.0 %, p = 0.002). Even though the anthropogenic horizon of soil class B2b

showed a significantly higher sand content (19.7 % compared to 15.1 %, p = 0.020), the profile
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and texture were considered to be consistent with the higher average ECa of class B2a. The
profile of soil class B2c is the only one without a Bg horizon. At the same time, the Ap-AB
horizon of this class is characterized by a significantly higher gravel content compared to class
B2b (24.3 % in class B2c compared to 3.5 %, p = 0.001). Furthermore, the sand content of the
Ap-AB horizon is significantly higher in soil class B2c¢ (21.7 % compared to 17.1 %, p = 0.010).
This is in agreement with the lower average ECa in class B2c compared to class B2b and
apparently compensates the significantly higher clay content of horizon Ap-AB of class B2c
(14.9 % in class B2c compared to 12.0 % in class B2b, p = 0.006). Note that each of these
anthropogenic soil classes was characterized using only three ground truth sampling locations, so

that the provided interpretation should be considered with some caution.

3.4.3 Classified ECa map of sub-area C

The results of the supervised classification of sub-area C are shown in

Figure 9b and the average profiles of the four soil classes are shown in
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Figure 9c-d. The profiles in this sub-area are relatively simple. A Bg horizon is consistently

present below a Bw horizon and an Ap-AB horizon is always found on top of each profile.

The two soil classes associated with natural deposits (Cla and C1b) did not show significant
differences in the horizon depths, and also no significant differences in texture were found. This
could be expected considering the subtle differences in ECa between the two classes (Table 5).
However, a significant difference in gravimetric water content was found for the Bg horizons.
The gravimetric water content was significantly higher in soil class Cla (16.0 % compared to
14.1 %, p = 0.021), which is in agreement with the higher average ECa for this class, and this
may be related to differences in bulk density at depths. Nevertheless, these two classes are

considered to be similar and could be merged according to the ground truth information.

For the anthropogenic soil classes (C2a and C2b), the soil profiles differ in the thickness and thus
the maximum depth of the anthropogenic horizon and the depth of the Bg horizon. The
anthropogenic horizon extends to 112.5 cm in C2b compared to a mean depth of 51.0 cm in C2a
(p =0.036). In addition, the top of the Bg horizon is 129.0 cm in C2b compared to 86.0 cm in
C2a (p = 0.034). This is in agreement with the interpretation of anthropogenic fillings of old
irrigation networks (class C2a) and water ponds (class C2b) that are further discussed in

Appendix A.

3.4.4 Classified ECa map of sub-area D

The results of the supervised classification of sub-area D are shown in Figure 10b, while the

average profiles of each soil class are shown in Figure 10c and Table 6 provides the average ECa
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values and the standard deviation for each of the four soil classes. The soil profile of each soil
class is characterized by finer sediments in the top horizons (Ap-AB, Bw, and Bg) above a
coarser 2C horizon. Another anthropogenic soil class with an Ap-AB horizon over an

anthropogenic layer is also present in this sub-area.

The four soil classes D1a-d showed similar horizon types. An Ap-AB horizon was found over
Bw and Bg horizons with variable thickness followed by a coarser 2C horizon. Similar to sub-
area A, the decrease in depth to the coarse 2C horizon corresponds with a decrease in average
ECa going from class D1a to class D1d (Table 6). The difference in depth to the 2C horizon are
statistically significant between classes D1b and D1c (122.7 cm in class D1b and 83.3 cm in class
Dlc, p =0.034). This difference was not statistically different between classes D1a and D1b, but
the textural analysis revealed a significant difference in gravel content of the Ap-AB horizon
(higher in class D1b with 4.3 % compared to 0.9 %, p = 0.044) and in sand content of the Bw
horizon (again higher in class D1b with 17.8 % compared to 14.5 %, p = 0.030). The difference
in depth was also not statistically significant between soil classes D1c and D1d. However, the
clay content of the Ap-AB horizon of soil class D1c was significantly higher than that of class
D1d (17.2 % compared to 15.0 %, p = 0.030). These observed differences in texture are in

agreement with the decrease in average ECa from class D1a to D1d.

Soil class D2 showed an anthropogenic horizon over coarser sediments in all four ground truth
locations. No other horizon type (e.g. Bw, Bg, or 2C) was found in these four profiles. The coarse
horizon at the bottom of the four profiles was different from the 2C horizon of the other classes
of sub-area D. This was confirmed by differences in the color of the sediments, the shape of the

gravels, and the generally higher clay, and water content compared to the 2C horizon of the other
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soil classes. This soil class was interpreted as the remains of a small brook that was recently

buried with anthropogenic filling (also see Appendix A).

3.5 Comparison with patterns in plant stress

In order to verify the ability of the high-resolution soil map to represent agronomically relevant
processes, it was compared to patterns in crop stress in sugar beet obtained from satellite imagery
(Figure 11). This comparison focused on approximately one fourth of the study area (25.5 ha)
covered with sugar beet and considered fields from all four sub-areas. Figure 11 shows the
patterns in crop stress determined for field FO5 (Figure 11b) and field FO7 (Figure 11e). It can be
seen that these patterns match well with the high resolution soil map for both fields (Figure 11c
and Figure 11f), and the match is visualized in Figure 11d and Figure 11g, where green cells

indicate correctly classified cells and red cells indicate incorrectly classified ones.

To quantify the match between the soil map and the patterns in crop stress, the TPR and TNR
were first calculated for each class and then aggregated to the field-scale using weighted
averaging (Table 7). The TPR represents the percentage of cells that are correctly classified as
stressed crops, and ranged from 60.2 to 93.5% for the investigated fields. The weighted average
for the study area was 77.9%. The TNR represents the percentage of cells that are correctly
classified as healthy crops, and ranged from 62.7 to 97.1% with a weighted average of 89.0% for

the study area.

In sub-area A, the TPR is 80.4%, the TNR is 73.6%, and the weighted average is 76.6% (Table 7).

The result of the classification in this sub-area is satisfying with a high accuracy in the
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classification of areas with stressed crops (soil classes Alc-d). In sub-area B, only soil class B1b
corresponded to stressed crops and the TPR is 73.1%. All other soil classes corresponded to
healthy crops, and the TNR was 95.2%. However, this high TNR is affected by the large area of
healthy crops (85%) in this sub-area. Sub-area C is entirely covered with healthy plants.
Consequently, it has no TPR and a TNR of 100%. In sub-area D, the TPR is 62.7%, the TNR is
84.6%, and the weighted average is 83.3%. Similar to sub-area B, is mostly covered with healthy
crops (~85%, soil classes D1a-c and D2a), resulting in a high TNR. In this sub-area, the relatively
poor TPR is most probably connected with the conditions in which field F40 was measured

(under heavy rain, the 20™ and 21* of October 2016).

Overall, the correspondence between the high-resolution soil map and the satellite image was
found to be satisfying, also because the geometry of the areas in which crops are experiencing

water stress during drought periods was identified to a reasonable degree.

4. Summary and Conclusions

In this study, multi-configuration EMI measurements were combined with ground truth data to
obtain a high-resolution soil map of a 1 x 1 km area. Due to the size of the investigated area and
the heterogeneous land management, it was necessary to acquire EMI measurements field by
field over a period of several months. Therefore, changes in ECa between fields due to different
water content and land management (crop type, fertilization, etc.) were present in the final ECa
maps of the study area. To enable a classification of the ECa measurements into areas with

similar soil properties, an approach commonly used for the interpretation of multi-band remote
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sensing data was adopted. For this, a multi-band image was created from the ECa data and a
supervised image classification strategy that additionally relied on available low-resolution soil
maps was used to divide the study area in a finite number of soil classes. In particular, the study
area was first divided in four sub-areas based on the nine available ECa maps and the available
soil maps. In a second step, these four sub-areas were further divided in a total of 18 soil classes
using a field-by-field analysis. It is clear that the results of such supervised classification depend
to some extent on the interpreter, as is the case for many soil maps. Nevertheless, it was found
that this approach was most suited to obtain soil information from the EMI measurements in the
presence of additional variation due to variable water content and pore water conductivity. Future
research could explore the benefit of advanced unsupervised classification methodologies to

obtain a more objective approach.

In a next step, we selected 100 locations where soil profile descriptions to a maximum depth of
two meters were obtained and a total of 552 samples were collected and analyzed to obtain
textural characteristics. The profiles of each class were averaged to obtain typical soil profiles for
each soil class with information on horizon type, layer depth, water content, and soil texture. In
each sub-area, classes were ordered according to their average ECa. Then, neighboring classes
were compared using two tailed z-tests that were performed between matching horizons. It was
found that there were significant differences between the soil profiles in terms of layering and
texture, and that the observed differences were in agreement with the variation of average ECa
between different classes. The final product of this study is a 1 m resolution soil map with 18

units with typical soil profile and texture information.
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Finally, the high-resolution soil map was compared with patterns in crop stress obtained from a
satellite image to verify that the soil map is able to represent such patterns. This evaluation was
performed for approximately one fourth of the study area, and it was found that areas with
stressed crops matched well with particular soil types. This indicates that the high-resolution soil
map obtained from a combination of multi-configuration EMI measurements and ground truth
data 1s useful for defining zones that require variable management within precision agriculture
applications. In addition, the high-resolution soil map is useful as input for agro-ecological model
applications to predict crop stress as a function of environmental boundary conditions (soil, water

availability, crop type). This will be explored in a follow up study.
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Appendix A — Geomorphological interpretation of EMI data

In this appendix, an interpretation of the geomorphological features that are visible in sub-areas
B, C, and D is provided. A comparison between ECa maps and other available data such as
morphometric data, historical maps, and historical aerial pictures was essential for the
identification of these features and informed the interpretation that was necessary to conduct a

proper supervised classification.

To obtain geomorphic information, we used a digital elevation model (DEM) with spatial a
resolution of 1 m (Scilands-GmBH, 2013). Additionally, anthropogenic features were considered
in the overall interpretation since the area has been cultivated in the last centuries. Finally, the
study area was a battlefield in WWII because the Rur river between Diiren and Jiilich represented
a strategic defense line during the invasion of Germany by the Allied forces from December 1944
to February 1945. This resulted in massive bombing runs on the city of Diiren and the nearby
defensive structures. Aerial pictures and historical maps were georeferenced and used to identify

whether observed subsurface structures are associated with war activity.

In sub-area B, the EMI data consistently showed small areas of 1-2 ha with lower ECa compared
to the surroundings. The shape of these areas depends on the DOI (see Figure Ala-c for DOIs of
75, 146 and 270 cm respectively) indicating that the presence of shallow structures was
associated with the slope that characterizes sub-area B. The shape and the position of different
structures along the slope allow a distinction between two regions with different genesis. The first
structure (Type 1 in Figure Ala-c) was interpreted as a deposition of coarse material eroded from

sub-area A when the channel system was not yet buried under aeolian sediments that led to the
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formation of small fluvial fans. To support this interpretation, it was found that these features
were adjacent to a paleochannel structure of sub-area A intersecting the boundary with sub-area
B, and that the ECa pattern showed an elongated shape with low persistence with depth in their
distal or proximal portions. The second structure (Type 2 in Figure Ala-c) was interpreted as a
feature resulting from both natural and anthropogenic processes. First, shallow and slow
movement has moved material from sub-area A to B. However, the observed feature is also
related to recent anthropogenic soil management. It is known that the topography of the study
area has been reshaped to facilitate agriculture with mechanized equipment (plowing, sowing and
harvesting). In addition, the area of the lower Ruhr has been inhabited and farmed for about the
last 7000 yrs. Thus, soil erosion since the beginning of arable farming has also contributed to

relief flattening.

Several other interesting features can be observed in the ECa values of sub-area C (

Figure A2). The shape of these structures is characterized by straight lines and approximately
square polygons. These structures were characterized by lower ECa values compared to the
surroundings and were interpreted as recent anthropogenic activity because of their distinct
geometry. To identify the origin of these shapes, we compared the ECa map in

Figure A2a with georeferenced aerial pictures and historical maps shown in

Figure A2b and

Figure A2c, respectively. From the aerial photo taken in November 1944 (USAAF, 1944), it can
be concluded that these features were not related to defensive trench systems from WWII (
Figure A2b). Instead, historical maps suggest that these structures were associated with field
boundaries, irrigation channels, and water ponds and reservoirs that were active at the end of the
19" century or before (

Figure A2c). Similar geometries are also visible in older maps like the Tranchot map from

Napoleon times dating back to between 1801 and 1809 (map not shown). The ECa and historical
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maps do not perfectly match, but this could be expected given the limited precision of the older

maps and the transient nature of such local water management structures.

More indications for recent anthropogenic activity have been identified in field F39 of sub-area D
(Figure A3). This area was characterized by various buried paleochannels, but it is also possible
to identify one channel with a strong EMI response (Figure A3a). When comparing the EMI
measurements with aerial photos from 1944 (USAAF, 1944) (Figure A3b), we identified a
depression that probably corresponds to the remains of a small brook. The channel has been
buried with anthropogenic sediments since 1944. The channel geometry matched with the higher
ECa values obtained with EMI, and it was still apparent in the DEM where a topographic
depression indicated the old position of the channel (compare Figure A3a, Figure A3b and Figure

A3c).
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946  Tables
947
948 Table 1 — EMI instrument configurations, coil separations, depth of investigation (DOI) and

949  frequency for the CMD Mini Explorer and the CMD Mini Explorer - Special Edition.

Separation DOI Frequency

EMI instrument Receivers Orientation [cm] [cm] [kHz]
Mini Explorer 3 VCP 32 0-24 30
VCP 71 0-53
VCP 118 0-89
Mini Explorer 6 HCP 35 0-52 25.17
Special Edition HCP 50 0-75
HCP 71 0-107
HCP 97 0-146
HCP 135 0-203
HCP 180 0-270
950
951

952  Table 2 - Average (avg.), and standard deviation (o) of measured ECa values (mS/m) obtained

953  with different coil configurations and separations for sub-areas A to D.

Sub-Area Sub-Area Sub-Area Sub-Area
D C B A

Configuration  Avg. o Avg. c Avg. c Avg. c
VCP 32cm 136 53 16.1 5.8 105 6.0 87 40
VCP 71lcm 17.5 43 220 4.8 15.1 4.0 10,6 3.2
VCP 118cm 18.8 4.0 245 4.6 16.6 3.3 114 3.1
HCP 35cm 15.6 39 18.8 4.2 14.0 2.1 10.7 2.8
HCP 50cm 165 33 20.6 4.0 147 22 11.1 2.6
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HCP 71cm 16.5 3.0 212 3.7 15.0 2.1 109 22

HCP 97cm 162 29 21.6 3.1 157 1.8 122 1.8
HCP 135cm 16.8 3.1 23.1 34 171 2.1 122 19
HCP 180cm 179 3.2 253 3.7 194 22 13.0 19
954
955

956  Table 3 — Average (Avg.) and Standard deviation (o) of the measured ECa values (mS/m)

957  obtained with the six HCP coil configurations in the four classes of sub-area A.

Ala Alb Alc Ald
Config. Avg. c Avg. c Avg. c Avg. c

HCP 035 12.5 29 10.8 23 9.6 23 8.3 1.9
HCP 050 12.9 2.5 11.1 2.1 10.0 1.9 8.6 1.5
HCP 071 12.5 2.2 10.9 1.6 10.0 1.6 8.8 1.3
HCP 097 12.7 1.8 11.1 1.3 10.3 1.3 9.4 1.1
HCP 130 12.7 1.8 11.1 1.4 10.3 1.3 9.9 1.2
HCP 180 13.6 1.9 11.8 1.3 11.1 1.3 10.8 1.2

958

959

960 Table 4 - Average (Avg.) and Standard deviation (o) of the measured ECa values (mS/m)

961  obtained with the six HCP coil configurations in the four classes of sub-area B.

Bla B1b B2a B2b B2c
Config. Mean c Mean c Mean c Mean c Mean c
HCP 035 16.1 2.0 13.3 1.6 14.7 2.5 14.3 2.5 12.6 2.0
HCP 050 16.9 22 14.2 1.9 15.5 24 14.9 2.2 13.2 2.1
HCP 071 17.2 1.9 14.6 1.8 15.8 2.1 15.2 2.1 134 1.9
HCP 097 17.7 1.6 15.4 1.0 16.6 1.7 15.8 1.7 14.0 1.5
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962
963

964

965

966

967

968

969

970

HCP 130

HCP 180

19.4

21.7

1.7

1.9

17.0

19.5

1.3

1.3

18.0

20.2

2.1

2.2

17.3

19.5

23

24

15.1

17.0

1.9

2.1

Table 5 - Average (Avg.) and Standard deviation (o) of the measured ECa values (mS/m)

obtained with the six HCP coil configurations in the four classes of sub-area C.

Cla C1b C2a C2b
Config. Mean c Mean c Mean c Mean c
HCP 035 20.0 4.0 18.3 3.8 19.6 4.9 19.0 4.0
HCP 050 22.1 3.8 20.1 34 21.5 39 19.9 3.7
HCP 071 22.7 3.6 20.8 3.1 21.6 33 19.8 34
HCP 097 22.9 2.8 21.3 2.7 21.3 2.7 19.9 34
HCP 130 24.5 3.1 22.8 2.8 22.8 29 20.7 32
HCP 180 26.8 33 252 3.0 25.1 33 22.7 4.0

Table 6 - Average (Avg.) and Standard deviation (o) of the measured ECa values (mS/m)

obtained with the six HCP coil configurations in the four classes of sub-area D.

Dla D1b Dlc Did D2
Config. Mean c Mean c Mean c Mean c Mean c
HCP 035 17.4 3.0 15.7 3.6 12.3 2.1 11.1 2.1 21.0 1.9
HCP 050 18.8 2.8 16.4 2.7 13.5 1.5 13.7 1.3 21.6 1.9
HCP 071 19.0 2.7 16.4 24 13.7 1.4 12.6 1.3 20.8 1.4
HCP 097 19.0 2.6 16.2 24 13.9 1.6 12.7 1.4 20.3 1.8
HCP 130 19.7 2.8 16.6 23 14.0 1.2 13.1 1.4 19.8 1.9
HCP 180 20.8 3.0 17.8 2.5 15.1 1.3 14.5 1.5 20.2 1.9
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971
972  Table 7 — True positive ratios (TPR), true negative ratios (TNR), and total percentage of correctly

973  classified cells (TOT) resulting from the comparison with satellite image.

TPR (%) TNR (%) TOT (%)

F05 87.0 73.6 79.0

F07 76.9 96.4 90.5

F08 93.5 97.1 96.6

F17a 89.6 62.7 70.4

F22b 74.0 77.4 76.2

F23 90.1 95.7 94.5

F24 91.0 96.1 95.2

F39 64.8 92.1 91.0

F40 60.2 89.0 88.1

F49 67.7 75.7 72.5

Sub-area A 80.4 73.6 76.6

Sub-area B 73.1 95.2 92.0

Sub-area C ND 100.0 100.0

Sub-area D 62.7 84.6 83.3

1x1km 71.9 89.0 87.2
974
975
976
977
978
979
980
981
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982  List of Figures

983  Figure 1. a) Satellite image of the study area (ESRI, 2016) with the measured fields and

984  respective codes, b) 1:5000 soil map of the study area where the locations of the upper terrace

985 (UT) and lower terrace (LT) are shown, c) digitized Soil Taxation Map (NRW, 1960) sheets

986 510410 and 510411.
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988  Figure 2. Local sensitivity function for the nine coil separations in the VCP and HCP loop

989  orientation with the separations that are shown in Table
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Figure 3. Flowchart of the supervised classification methodology.
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Figure 4. Multiband raster image from the ECa interpolation maps on F0O5. The 6 bands are the 6

coil distances in HCP configuration of the CMD Mini Explorer — Special Edition.
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Figure 5. ECa maps of the six HCP configurations: a) HCP 35 cm with lines from the 1:5,000 soil
map, b) HCP 50 cm with lines from the soil taxation map, ¢) HCP 71 cm with subdivision of the
study area in four geomorphological sub-areas A, B, C, and D, d) HCP 97 cm with evidence of

buried irrigation channels and water ponds (dashed line), ¢) HCP 118 cm, f) HCP 180 cm.
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1009  Figure 6. a) Variation in ECa between fields measured within 24h on August the 25" 2016, b)
1010  variation in ECa between fields measured at different times (measurement dates given after field

1011  abbreviation).
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Figure 7. a) ECa map of the HCP 97 cm configuration in sub-area A, b) classified ECa map of

sub-area A with the locations of the ground truth points, c¢) averaged soil profiles for each of the

four classes with a description of the statistically significant differences in texture and layers

depth between classes Ala-Alb, Alb-Alc, and Alc-Ald. Note that the ECa scale for panel a)

differs from the one in Figure 5 to improve visualization.
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Figure 8. a) ECa map of the HCP 97 cm configuration in sub-area B, b) classified ECa map of
sub-area B with the locations of the ground truth points, c-d) averaged soil profiles for each of the

four classes with a description of the statistically significant differences in texture between

classes Bla-B1b, B2a-B2b, and B2b-B2c.
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Figure 9. a) ECa map of the HCP 97 cm configuration in sub-area C, b) classified ECa map of

sub-area C with the locations of the ground truth points, c-d) averaged soil profiles for each of the

four classes with a description of the statistically significant differences in texture and layers

depth between classes Cla-C1b and C2a-C2b.
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indicates: i) +X- value is higher on the left profile,
ii) -X+ value is higher on the right profile.

- Parameters: C = clay, S = sand,

G = gravel, W = water content.
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Figure 10. a) ECa map of the HCP 97 cm configuration in sub-area D, b) classified ECa map of

sub-area D with the locations of the ground truth points, c) averaged soil profiles for each of the

four classes with a description of the statistically significant differences in texture and layers

depth between classes D1a-D1b, D1b-Dlc, and D1c-D1d.
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- Param: C = clay, S = sand, G = gravel.
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Figure 11. a) Satellite image (ESRI, 2016) of the study area with highlights on the fields cropped
with sugar beet, b) digitized patterns in crop stress in FO5 ( FO7 shown in e), ¢) comparison
between classified map and patterns in crop stress on FO5 (FO7 shown in f), d) correctly classified

cells (green) and incorrectly classified one (red) on FO5 (FO7 shown in g).

e Stressed Crops VIA Healthy Crops - Match with Classification - No Match

| F05: TRP = 87.0%, TNR = 73.6%, Total correctly classified cells = 79.0% |

FO7: TRP = 76.9%, TNR = 96.4%, Total correctly classified cells = 90.5%

Figure A1l. Shallow structures of type 1 and 2 visible along the slope in sub-area B. The

interpolated ECa values are shown for a) HCP 49c¢m, b) HCP 97cm, and ¢) HCP 180cm.
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Figure A2. Geometry of anthropogenic features highlighted by a) ECa maps with HCP 97cm

configuration compared with b) aerial photo from 19" November 1944 and c) historical map

from 1881-1912 (NRW, 2017).
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Figure A3. a) ECa maps for HCP 97 cm configuration highlighting a buried structure with a

strong EMI response, b) aerial picture from 19" of November 1944 (USAAF, 1944), and ¢) DEM

with 0.5 m spaced contour lines.
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