001     851724
005     20210129235007.0
024 7 _ |a 10.1109/IPDPSW.2018.00019
|2 doi
024 7 _ |a 2128/19669
|2 Handle
024 7 _ |a WOS:000541051600007
|2 WOS
037 _ _ |a FZJ-2018-05256
100 1 _ |a Kreuzer, Anke
|0 P:(DE-Juel1)138688
|b 0
|u fzj
111 2 _ |a 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
|g IPDPS
|c Vancouver
|d 2018-05-21 - 2018-05-25
|w Canada
245 _ _ |a Application Performance on a Cluster-Booster System
260 _ _ |c 2018
|b IEEE
300 _ _ |a 69 - 78
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1536673727_25366
|2 PUB:(DE-HGF)
520 _ _ |a The DEEP projects have developed a variety of hardware and software technologies aiming at improving the efficiency and usability of next generation high-performance computers. They evolve around an innovative concept for heterogeneous systems: the Cluster-Booster architecture. In it, a general purpose cluster is tightly coupled to a many-core system (the Booster). This modular way of integrating heterogeneous components enables applications to freely choose the kind of computing resources on which it runs most efficiently. Codes might even be partitioned to map specific requirements of codeparts onto the best suited hardware. This paper presents for the first time measurements done by a real world scientific application demonstrating the performance gain achieved with this kind of code-partition approach.
536 _ _ |a 513 - Supercomputer Facility (POF3-513)
|0 G:(DE-HGF)POF3-513
|c POF3-513
|f POF III
|x 0
536 _ _ |a DEEP - Dynamical Exascale Entry Platform (287530)
|0 G:(EU-Grant)287530
|c 287530
|f FP7-ICT-2011-7
|x 1
536 _ _ |a DEEP-ER - DEEP Extended Reach (610476)
|0 G:(EU-Grant)610476
|c 610476
|f FP7-ICT-2013-10
|x 2
536 _ _ |a DEEP-EST - DEEP - Extreme Scale Technologies (754304)
|0 G:(EU-Grant)754304
|c 754304
|f H2020-FETHPC-2016
|x 3
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Eicker, Norbert
|0 P:(DE-Juel1)132090
|b 1
|u fzj
700 1 _ |a Amaya, Jorge
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Suarez, Estela
|0 P:(DE-Juel1)142361
|b 3
|e Corresponding author
|u fzj
770 _ _ |z 978-1-5386-5555-9
773 _ _ |a 10.1109/IPDPSW.2018.00019
|p 69 - 78
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/851724/files/Kreuzer_HCW2018.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/851724/files/Kreuzer_HCW2018.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:851724
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)138688
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)142361
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-513
|2 G:(DE-HGF)POF3-500
|v Supercomputer Facility
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21