000851733 001__ 851733
000851733 005__ 20210129235007.0
000851733 0247_ $$2doi$$a10.1016/j.commatsci.2018.08.055
000851733 0247_ $$2ISSN$$a0927-0256
000851733 0247_ $$2ISSN$$a1879-0801
000851733 0247_ $$2Handle$$a2128/19697
000851733 0247_ $$2WOS$$aWOS:000447748900051
000851733 037__ $$aFZJ-2018-05260
000851733 082__ $$a530
000851733 1001_ $$0P:(DE-HGF)0$$aGanesan, H.$$b0$$eCorresponding author
000851733 245__ $$aParallelization comparison and optimization of a scale-bridging framework to model Cottrell atmospheres
000851733 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000851733 3367_ $$2DRIVER$$aarticle
000851733 3367_ $$2DataCite$$aOutput Types/Journal article
000851733 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552577319_30277
000851733 3367_ $$2BibTeX$$aARTICLE
000851733 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851733 3367_ $$00$$2EndNote$$aJournal Article
000851733 520__ $$aLow carbon steels undergo strain aging when heat treated, which causes an increased yield strength that can be observed macroscopically. Such strengthening mechanism is driven by atomistic scale processes, i.e., solute segregation of carbon (C) or nitrogen interstitial atoms. Due to its low solubility, alloying elements can diffuse to defects (e.g., dislocations) and form the so-called Cottrell atmospheres. Consequently, the mobility of defects is strongly reduced because of the interaction with solutes, and higher stresses are needed to unpin them from the Cottrell atmosphere. As C segregation and atomistic motion take place at separate timescales, Classical Molecular Dynamics (MD) and Metropolis Monte Carlo (MC) are coupled in a unified framework to capture collective effects with underlying slow dynamics. The number of degrees of freedom and the need for large computational resources in this simulation requires the choice of an optimal parallelization technique for the MC part of such multi-scale simulations using an unbiased sampling of the configuration space. In the present work,two different parallel approaches for the MC routine applied to the simulation of Cottrell atmospheres are implemented and compared: (i) a manager-worker speculative scheme and (ii) a distributed manager-worker over a cell-based domain decomposition approach augmented by an efficient load balancing scheme. The parallel performance of different Fe-C containing defects with several millions of atoms is analyzed, and also the possible optimization of the efficiency of the MC solute segregation process is evaluated regarding energy minimization.
000851733 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000851733 536__ $$0G:(DE-Juel1)jjsc29_20170501$$aParallel Hybrid Monte Carlo/Molecular Dynamics for Segregation in Solid State Systems (jjsc29_20170501)$$cjjsc29_20170501$$fParallel Hybrid Monte Carlo/Molecular Dynamics for Segregation in Solid State Systems$$x1
000851733 588__ $$aDataset connected to CrossRef
000851733 7001_ $$0P:(DE-HGF)0$$aTeijeiro, C.$$b1$$eCorresponding author
000851733 7001_ $$0P:(DE-Juel1)132274$$aSutmann, G.$$b2$$eCorresponding author$$ufzj
000851733 773__ $$0PERI:(DE-600)2014722-3$$a10.1016/j.commatsci.2018.08.055$$gVol. 155, p. 439 - 449$$p439 - 449$$tComputational materials science$$v155$$x0927-0256$$y2018
000851733 8564_ $$uhttps://juser.fz-juelich.de/record/851733/files/1-s2.0-S0927025618305834-main.pdf$$yRestricted
000851733 8564_ $$uhttps://juser.fz-juelich.de/record/851733/files/1-s2.0-S0927025618305834-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851733 8564_ $$uhttps://juser.fz-juelich.de/record/851733/files/EuromatProceedingR1_Ganesan.pdf$$yOpenAccess
000851733 8564_ $$uhttps://juser.fz-juelich.de/record/851733/files/EuromatProceedingR1_Ganesan.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851733 909CO $$ooai:juser.fz-juelich.de:851733$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132274$$aForschungszentrum Jülich$$b2$$kFZJ
000851733 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000851733 9141_ $$y2018
000851733 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851733 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851733 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMP MATER SCI : 2015
000851733 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851733 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851733 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851733 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851733 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851733 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851733 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851733 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851733 920__ $$lyes
000851733 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000851733 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000851733 980__ $$ajournal
000851733 980__ $$aVDB
000851733 980__ $$aI:(DE-Juel1)JSC-20090406
000851733 980__ $$aI:(DE-82)080012_20140620
000851733 980__ $$aUNRESTRICTED
000851733 9801_ $$aFullTexts