
Parallelization comparison and optimization of a

scale-bridging framework to model Cottrell atmospheres

H. Ganesana,b,∗, C. Teijeiroa, G. Sutmanna,c

aInterdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-University
Bochum, D-44801 Bochum, Germany

bMaterials Mechanics Division, Institute of Materials Research, Helmholtz-Zentrum
Geesthacht, D-21502 Geesthacht, Germany

cJülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS),
Forschungszentrum Jülich, D-52425 Jülich, Germany

Abstract

Low carbon steels undergo strain aging when heat treated, which causes an in-

creased yield strength that can be observed macroscopically. Such strengthening

mechanism is driven by atomistic scale processes, i.e., solute segregation of car-

bon (C) or nitrogen interstitial atoms. Due to its low solubility, alloying elements

can diffuse to defects (e.g., dislocations) and form the so-called Cottrell atmo-

spheres. Consequently, the mobility of defects is strongly reduced because of

the interaction with solutes, and higher stresses are needed to unpin them from

the Cottrell atmosphere. As C segregation and atomistic motion take place at

separate timescales, Classical Molecular Dynamics (MD) and Metropolis Monte

Carlo (MC) are coupled in a unified framework to capture collective effects with

underlying slow dynamics. The number of degrees of freedom and the need for

large computational resources in this simulation require the choice of an opti-

mal parallelization technique for the MC part of such multi-scale simulations

using an unbiased sampling of the configuration space. In the present work,

two different parallel approaches for the MC routine applied to the simulation

of Cottrell atmospheres are implemented and compared: (i) a manager-worker

speculative scheme and (ii) a distributed manager-worker over a cell-based do-

∗Corresponding author
Email addresses: hariprasath.ganesan@hzg.de (H. Ganesan),

carlos.teijeirobarjas@rub.de (C. Teijeiro), g.sutmann@fz-juelich.de (G. Sutmann)

Preprint submitted to Computational Materials Science September 18, 2018



main decomposition approach augmented by an efficient load balancing scheme.

The parallel performance of different Fe-C containing defects with several mil-

lions of atoms is analyzed, and also the possible optimization of the efficiency of

the MC solute segregation process is evaluated regarding energy minimization.

Keywords: Parallel Monte Carlo, general manager-worker, distributed

manager-worker, solute segregation modeling, Fe-C system

2010 MSC: 65C05, 65Y05

1. Introduction

Formability is an exciting material property that determines the scope of

application of engineering materials and this property depends on the ability

of the material to deform plastically. In this aspect, dislocation mobility is

strongly related to the plastic deformation behavior of crystalline metallic ma-

terials, and the accumulation of solute atoms in the vicinity of defects can lead

to solid-solution strengthening. The light elements in the solid solution interact

with the stress field introduced by a given dislocation and distribute around

its core, forming the so-called Cottrell atmosphere [1], and thereby restricting

the dislocation mobility during the plastic deformation. This mechanism was

first observed and postulated by Cottrell and Bilby [2] as static strain aging in

ferritic steels. Much research has been directed towards experimental and nu-

merical understanding of the solute-dislocation interactions, and in some cases,

it has been possible to find direct correlations to macroscopically observed ma-

terial properties. In the case of bake hardened steels, which are specially used

for manufacturing automobile components because of their excellent dent resis-

tance [3], an increase in the yield strength is attributed to the interaction of

carbon Cottrell atmospheres with dislocations.

In particular, the formation of carbon (C) Cottrell atmospheres in defect

iron (Fe) structures is considered as a process composed of rare events, i.e., a C

atom oscillates at a local minimum for a long time until it overcomes an energy

barrier to find a new local minimum in the potential energy landscape. Based

2



on the experimentally computed diffusion coefficients, the C diffusion in ferritic

steels spans in a time frame between seconds to hours [4] depending on the

operating conditions (e.g., temperature or solute concentration). On the one

hand, atomistic simulation approaches like Classical Molecular Dynamics (MD)

are well suited for this simulation, but the integration of Newton’s equations

of motion at each time step [5] has a feasible timescale of only a few nanosec-

onds. On the other hand, Monte Carlo provides an alternative approach which

is independent of underlying time scales. Therefore, Classical MD and Metropo-

lis [6] Monte Carlo (MC) are here coupled using virtual atoms to overcome the

timescale limitation. Each virtual atom is defined as a placeholder, that is, a

site in the system which may potentially be suitable to place a C atom: conse-

quently, the number of virtual atoms in a system depends strongly on the crystal

structure [7]. Considering this scope, two different parallelization approaches

applied for the MC simulation in the coupling scheme are compared for dif-

ferent scenarios according to its performance and statistical efficiency, so that

the prediction capabilities of the underlying physics and the computational per-

formance of these algorithms is evaluated. Both parallel approaches are based

on the manager-worker scheme: the first approach is a general manager-worker

based on a speculative scheme developed by the authors [7] and the second ap-

proach is newly proposed scheme with a distributed manager-worker that uses

domain decomposition combined with a load balancing routine. The main con-

tributions of the paper are (1) the description of the design and implementation

of the distributed manager-worker, (2) it’s comparative analysis with the previ-

ous general manager-worker algorithm on different ferritic systems with defects,

and (3) the study of further statistical optimization possibilities for the MC

procedure based on system energy data.

The rest of the work is organized as follows. Section 2 describes previous

advances in parallel MC methods. Section 3 presents background information

about the parallel simulation problem and describes the two parallel algorithms

used in this work, with the particular focus on the distributed approach. Sec-

tion 4 shows the performance comparison of the parallel algorithms for different

3



simulations of single crystalline metallic materials with defects. Finally, Sec-

tion 5 summarizes the main outcome of the work and gives an outlook for the

future work.

2. Related work

Many parallelization strategies for MC algorithms [8, 9, 10, 11, 12, 13] have

generally been inspired by different short-range techniques used for MD since

many years [14, 15, 16], and they have previously been proposed based on several

factors: geometry, task, algorithm and target hardware architectures. Geom-

etry parallelization is based on independent regions and suitable for applica-

tions where the inter-atomic interactions are particularly short-ranged, like for

embedded-atom method (EAM) [17] potentials. A farm parallelism approach is

used in work by Jones et al. [9], where a manager process performs the actual

trial moves and the energy of a trial configuration is computed in parallel by

worker processes. However, this approach by Jones et al. requires sequential

equilibration, therefore limiting its application to large systems. In case of event

parallelism, a large simulation is broken into smaller blocks of equal length ex-

ecuted concurrently on all workers and manager. It is particularly useful for

computing the average quantities where the order of summation does not play

any role. However, this approach is not suitable for the simulation of solute

segregation, because each trial conformation should account for chemical and

mechanical changes in the environment to mimic a sequential approach. Es-

selink et al. [10] devised another MC algorithm showing a chain molecule as an

example, in which many trial conformations are constructed in parallel and con-

formation with the highest probability is chosen: nevertheless, this algorithm is

most suitable for applications with very low acceptance of trial moves.

More recent implementations of parallel MC have been accomplished us-

ing a domain decomposition scheme. One simple and interesting approach by

Uhlherr et al. [18] obtained very interesting results for the simulation of large

polymer chains: here the system was split into active and inactive regions,

4



therefore ensuring a complete independence between parallel trial move exe-

cutions. Considering the system under study (carbon segregation in deformed

steel), executing independent sequences of individual trial moves might cause

carbon trapping in the local minima (active regions), and thus limiting them

from finding global minima. However, such independent sequence happens to be

a smart approach for polymer systems. Sadigh et al. [13] proposed a scalable

parallel MC algorithm for variance constrained semi-grand canonical ensembles

with spatial domain decomposition, where the MC sample selection is performed

using non-interacting moving cubes (sampling volume) concurrently on all pro-

cesses. This approach presents interesting features regarding parallelism, but it

is not effective for modeling solute segregation in the system with fixed back-

ground concentration of solutes. One main reason is that the acceptance rate

tends to decline or decay for the structural minimization problems, and also

solute particles might get redistributed to a specific set of processes causing a

serious load balancing issue. Another parallel MC implementation for different

statistical ensembles has been done by Yamakov et al. [19] for the simulation of

the swap, and displacement trial moves similarly to a serial MC algorithm. Here

the domain decomposition strategy is extended from the work of Sadigh et al.,

so that each domain has independent sampling zones and is defined using a link

cell mesh for effectively identifying the neighbor particles within the prescribed

interaction range. This work state the difficulty in parallelization for canonical

ensemble with swap trial moves, as well as the nonavailability of an efficient

algorithm to perform random swap trial moves in parallel.

In general, previous parallelization strategies are often advantageous, al-

though limited because of the trade-off between the acceptance rate and quality

of sampling, therefore being problem-specific. In this sense, the present work

provides more insight on the performance of the parallel MC approach for mod-

eling the interstitial solute segregation, and also discussing the design decisions

to reduce the execution time and exploit computational resources efficiently

without systematically affecting the simulation. As it is difficult to hand pick

any existing parallel approach for this particular application of Cottrell atmo-

5



spheres modeling, because of several challenges with the different system require-

ments and fluctuating acceptance rate, a new scalable parallel scheme called

‘distributed manager-worker’ is presented, and it is compared in performance

with an earlier developed scheme, referred to as ‘general manager-worker’ and

implemented by the same authors [7].

3. Parallel implementations

The target simulations in this work are performed on ferritic (α-Fe, with bcc

crystal structure) defect systems that consist of three types of atoms: Fe, C,

and, virtual atoms. The Metropolis MC algorithm is implemented and executed

in four main steps:

• Choose a random C atom (i.e., ‘target’ ) and a random virtual atom (i.e.,

‘sample’ ) from the current system configuration.

• Perform a swap trial move between target and sample atoms by inter-

changing their positions.

• Compute the energy of the new configuration following the trial move.

• Evaluate the acceptance criterion by testing if the new configuration achieves

lower energy than the initial configuration.

In general, the trial moves of Metropolis MC are performed sequentially

because of its dependency on the previous configuration, and therefore the par-

allelization of the MC routine needs to adapt to this fact. In this aspect, the

use of swap trial moves has been selected in order to facilitate an energy min-

imization by C redistribution in the simulated system, but this choice may be

modified (e.g. using trial moves to insert/delete a C atom, or swapping many C

atoms) without affecting the applicability or scalability of the algorithms pre-

sented in this work: the management protocols of the parallel executions is not

affected by different trial moves.

6



First principle studies inform that a C atom prefers an octahedral site inside

the bcc-Fe host matrix. Such introduced C atom creates a tetragonal lattice

distortion in the ferritic host matrix and therefore exerts tension on the two first

nearest neighbors and compression on the second nearest neighbors. However,

the lattice distortion in the host matrix created by this impurity atom has

shown to be short ranged [7], and this fact opens different possibilities for the

parallelization of the MC algorithm. Each trial move involves two spherical

regions in the system, which are in principle allowed to overlap, with one of the

chosen atoms in the center of each region. Each individual region (sphere) can be

limited in size because of the finite spatial influence of the perturbations induced

by the particle swap. Therefore, the relaxation and energy computation of each

sphere is local and provides a natural possibility for parallel computation. In

the case of ferritic defect systems, the atomic interactions around the chosen

atoms (i.e., C and virtual atom) involved in every trial move are defined within

a sphere radius of 2 nm with an additional layer of influence in which only the

atom energy may vary.

Figure 1 gives an example of the type of systems simulated by the coupling

scheme of MD with MC: a ferritic single crystal with virtual atoms introduced

at all the octahedral sites and containing defect networks. The simulation box

includes a fixed concentration of solutes (in this case, C atoms) randomly dis-

tributed. As indicated previously, at each MC step a random C and virtual

atom are chosen, and their positions are exchanged (i.e., the particle species are

swapped). Two spherical volumes are constructed according to the given cut-off

radius using the coordinates of both selected particle as centers. The energies

of these spherical volumes are computed before and after the trial move us-

ing Molecular Statics simulations via MD interface using the IMD library [20].

Based on the successful outcome of the evaluated acceptance criterion (i.e., the

energy of the spheres after the trial move simulation is lower than before), all

atomic entities are updated within the spheres.

In the next subsections, we discuss the two parallel MC algorithms, i.e.,

general and distributed manager worker.

7





subsystems, non-overlapping spheres in the system may be executed as indepen-

dent MC trial moves in parallel [7], using the cut-off radius for the definition of

spheres as the reference.

This parallel implementation of Metropolis MC uses a speculative algorithm,

in which the overlap between spheres of different trial moves is allowed, and

conflicts are resolved after their execution. According to the requested number

of trial moves for a given simulation, the manager creates as many jobs as

necessary for the worker processes and appends them to a job queue in the

order of construction. In the case of spatial overlap between spheres that belong

to different trial moves executed by different worker processes, the manager

solves the conflict after the execution of the affected jobs and according to

the step identifier of the job. For example, if a job i has been generated and

accepted, the system configuration needs to be updated, and therefore later

jobs with identifier j (j > i) that have a conflict with i and have started their

execution before i has finished must necessarily be discarded. In the event of

high acceptance rate, there could be an increased discard rate and thus affecting

the parallel performance. However, the overlapping probability is low when the

sampling regions are separated by distance larger than the influence range e.g.,

homogeneous C distribution. The job queue is dynamic and any completed,

or processed job in the queue is pulled out of the queue in a FIFO order until

no jobs are left in the queue, which indicate the end of the simulation. Any

discarded job in the job queue needs to be repeated until it becomes a valid MC

step (i.e., accepted or rejected).

A simple scheme of the general Manager-worker approach is illustrated in

Figure 2 with one manager and three worker processes. The different spherical

volumes represent the parallel trial moves, and the number of the spheres (see

Fig., 2) corresponds to the MC step (i.e., the ordered sequence of trial moves

generated by the manager). Here the created jobs are assigned to target worker

processes in the order of request queue, without any relation between worker

identifier and MC step. The image also illustrates a spatial conflict between

spheres 1 and 3, which needs to be solved by the manager after the execution of

9





system size, because of the storage of global information in the memory of the

manager process. To solve these issues, a distributed manager-worker approach

with an asynchronous communication scheme is implemented (also using C++

with the MPI library, as the general algorithm), and according to the model

shown in Figure 3. The basis of this distributed approach is the use of a domain

decomposition approach, so that the simulated system is divided into contiguous

subdivisions (domains) assigned to different manager processes (i.e., one domain

per manager). All trial moves generated by each manager are executed by its

associated worker process. The underlying system implementation is defined

by a generic simulation framework based on the generic definition of domains,

blocks, and cells [24]: a domain is defined spatially as a 3-dimensional mesh

of equally sized blocks, each block is a 3-dimensional mesh of equal cells, and

each cell contains a set of atom information required for its assigned volume.

By definition, the minimum volume of a cell in the system is LF e × LF e × LF e,

where LF e represents the lattice constant of Fe (2.8665 Å).

3.2.1. Trial move processing

As a consequence of the domain decomposition, each manager has only par-

tial system information, and the execution of trial moves has to be coordinated

among the managers. Thus, each manager process is initially assigned a bal-

anced number of MC trial moves and uses a coordination protocol with the rest

of managers to select the target and sample atoms for every trial move. The

target C atom is always chosen locally by random selection inside the set of

atoms assigned to each manager. On the other hand, the sample virtual atom

can be chosen in two ways: either in the proximity of the target (i.e., inside a

sphere centered on the target atom using a given radius) or anywhere in the

system, thus implementing local or fully non-local trial moves. An example of

trial move selection is illustrated in Figure 4.

The selection of a virtual atom in an area outside the local domain is done

by obtaining a random cell within the system limits and then choosing a ran-

dom virtual atom inside that cell. The high density of virtual atoms, which

11





are defined in octahedral sites of the Fe structure with low C concentration,

guarantees a very high chance of finding a virtual atom within the size of a cell

in the bulk system, even considering the minimum cell size (lattice constant of

Fe). Therefore, for any given trial move, the local manager sends the locations

of the selected target and the desired virtual atom to all other managers, so that

it can obtain the necessary information about atoms in remote domains to build

the required spheres. Any remote manager may notify a conflict if the spheres

are overlapping with their own local trial move, and also upon selection of a

sample cell that includes no valid virtual atom. If the trial move is valid for a

remote manager, it returns an accepted tag and the partial system information

required by the local manager to build the spheres.

Figure 4: Simplified example of distributed manager worker with four managers and four

trial moves associated with them. The Fe atoms are indicated by large dotted black circles,

whereas C and virtual atoms are represented by small orange and blue circles, respectively.

The target and sample atoms for each given trial move are located in the center of the spheres

in red and green, respectively. Note that the local trial move to each manager is the one whose

target atom is located in the local domain: sample atoms may be located anywhere else in

the system.

13



After this step, the local manager creates its own part of the spheres, packs

the information together and sends it to its associated worker process, alongside

with the old value of the energy of the sphere. The worker executes the local MD

routine for the relaxation of the spheres, computes the new energy and decides if

the trial move should be accepted. The reason to do the acceptance evaluation

on the worker is to minimize communication from worker to the manager: apart

from the necessary statistical information about the executed trial move, the

worker only sends the full information of the spheres to the manager if the trial

move is accepted. When the manager receives the information about the trial

move, it checks the status (accepted/rejected) and updates its local domain

when necessary. To avoid additional messages, the result data from remote

managers is stored in a send buffer until the local manager requires to establish

a new communication with them: that is, the result of an executed trial move

may be sent as an attachment to another message notifying, e.g., a new trial

move or a finished manager. As a result of this, a high acceptance ratio of trial

moves may only imply more communication of modified atom positions and

a local domain update on the managers, but even this overhead is negligible

compared to the execution of trial moves performed by the workers.

3.2.2. Load balancing

The use of a load balancing algorithm in the distributed manager-worker

approach is essential for the correct behavior of the algorithm. As the C atoms

in each domain are taken as targets for the execution of all the trial moves that

correspond to each manager-worker pair, it is necessary to keep a good amount

of choices for target atoms in the domain. Moreover, a similar number of C and

virtual atoms per manager is required to ensure an almost equal chance of selec-

tion for any of these elements in a trial move at any time of the simulation. As

a consequence of that, load balancing also ensures that representative statistical

information is obtained from the MC routine. The distributed manager-worker

algorithm implements two types of load balancing: (1) adaptive algorithm with

non-orthogonal domains, and (2) atom decomposition procedure. A general

14



illustrative example of both routines can be found in Figure 5.

On the one hand, the adaptive load balancing algorithm [25] is integrated

in the functionality of the framework that gives support to the domain decom-

position of the system [24]. Starting from an orthogonal definition of domains,

this algorithm moves the vertices of each domain according to a driving force,

which is calculated using a system-dependent workload function. The work-

load function is implemented using heuristic information that can estimate the

workload associated with each domain. In the present case, the heuristic infor-

mation considered is the number of C atoms in each domain. Together with the

coordinates of the C atoms, the load balancing algorithm can define a center

of gravity for each domain and then move the corners accordingly to obtain a

better workload distribution. The corners that define the limits of the systems

are not moved to preserve the correct bounding box. Therefore, when the C

concentration on one domain goes below a threshold (generally defined as 60%

of the ideal distribution of C defined as nC/ndom, where nC is the total number

of C atoms in the system, and ndom is the number of domains) in one of the

domains, the load balancing routine is activated for the whole system and the

domain corners are moved until a more even distribution of C is achieved (at

least 80% of the ideal distribution of C in all domains).

On the other hand, the load balancing routine based on atom decomposition

distributes C atoms in the system between domains separately from the rest

of atoms in the system. First, this algorithm defines the initial orthogonal

domains according to system size, but the domain structure (blocks and cells)

is only filled with the data of Fe and virtual atoms, whereas all the data related

to C atoms are stored in a separate array. If the execution of many trial moves

15



Figure 5: Simplified example of adaptive load balancing (left-hand side) vs. atom decompo-

sition (right-hand side). The graphs a) and b) (upper part) represent the same initial system

distributed in four orthogonal domains, and the graphs c) and d) (lower part) illustrate two

possible scenarios after executing both load balancing routines on the initial systems. The

C atoms in the atom decomposition scheme are stored separately in different arrays for each

domain (drawn at the top and the bottom of the corresponding graphs), and the dotted arrows

indicate which is the atom the correct position of each C atom in the associated domain.

16



causes the C concentration to drop, the arrays of C atoms for every domain are

gathered by one root manager (defined as process 0), shuffled and distributed

back to the managers. The domain structure that contains the rest of atoms (Fe

and virtual atoms) is also refreshed when the load balancing routine is activated.

The best feature of the adaptive load balancing algorithm is its high flex-

ibility while preserving the neighborhood relations between domains so that

the largest data communications for trial move selection can always be defined

among nearest neighbor domains. However, this algorithm performs conserva-

tive checks for coherency between domains, so that one atom may only move

to the nearest neighbor cell between executions of the load balancing routine.

Therefore the adaptive algorithm may need to be iterated several times until

the domain corners move to the final balanced position, which may also be

suboptimal. Here the atom decomposition algorithm has a clear advantage be-

cause it reaches the optimal distribution in just one step but at the cost of not

preserving the locality of C atoms concerning the local domain (cf. Figure 5).

Consequently, a global and potentially large communication among all managers

is required to perform the load balancing and also build every trial move sphere

with all possible Fe, virtual and C atoms.

Overall, the choice of load balancing algorithm for the MC simulation is

mainly related to the number of C atoms and the size of the system, as well as

the expected scalability. The fact that the bcc Fe structures for the simulation of

Cottrell atmospheres contain a low C concentration implies that the overhead

of using the atom decomposition load balancing is relatively small, because

the amount of C atoms is almost negligible concerning the number of Fe and

virtual atoms. Only when the system size requires the definition of a very

large number of domains (potentially in the order of 103), the nearest neighbor

communications between managers in the adaptive load balancing will be more

efficient than a global communication for every trial move. Considering these

facts, the selected algorithm for the test cases shown in Section 4 has been the

atom decomposition.

17



3.2.3. Asynchronous processing

As a general summary of the distributed manager-worker functionality, Fig-

ure 6 presents the pseudocode of the core routine for the processing of trial

moves in each manager. The parallel execution of this routine in every manager

is mainly asynchronous, so that the requests for new trial moves and notifica-

tion of finished managers may be sent and received at any point in time and at

any stage of the algorithm. The execution of the load balancing routine is the

only part that requires synchronization between managers. After receiving the

worker results, the corresponding manager checks if the load balance condition

is met, and in that case, the manager sends a trigger to the remote managers in

the system and waits for other managers to be ready for load balancing. While

waiting for load balancing, a triggered manager will be receiving and process-

ing any notification from remote managers normally: the only difference with

the normal status is that no new trial move is generated until the load bal-

ance routine has been called. Finally, when all managers are triggered, the load

balancing routine is executed, and after it, new trial moves can be generated.

4. Performance results

The manager-worker MC codes (general and distributed) have been tested

in the JURECA supercomputer at Jülich Supercomputing Centre (JSC), which

represents a general-purpose supercomputer with hybrid shared/distributed mem-

ory architecture. Each computing node is composed of two Intel Xeon E5-2680

Haswell CPUs (2 × 12 cores) and 128 GB DDR4 memory, with the intercon-

nection network Mellanox EDR InfiniBand. The compiler suite used for the

MC applications and the internal MD library used for the sphere relaxation of

every trial move (the IMD library [20]) is the Intel C compiler suite 18.0.0, with

the MPI wrapper mpicxx for the parallel MC and icc for the serial MD library

call. The optimization flags “-Ofast -xHost -fno-alias” have been used in all

compilations.

Two different test systems are used for this evaluation. The description and

18



1 numtrialmoves = N
2 f i n i s h e d = 0
3 numactivemanagers = numtotalmanagers
4 while ( f i n i s h e d < numtrialmoves or numactivemanagers > 0) {
5 i f ( load ba l anc in g i s t r i g g e r e d and
6 a l l other managers are ready ) {
7 execute synchronous load ba la nc i ng r o u t i n e
8 i f ( l o c a l manager i s a c t i v e ) s e l e c t new t r i a l move
9 }

10 wait message from other manager or the worker
11 i f ( message type i s WORKER_FINISHED) {
12 i f ( p r e v i o u s t r i a l move i s accepted ) {
13 update sphere and l o c a l domain
14 pack sphere data to send to remote managers
15 }
16 i n c r e a s e f i n i s h e d
17 i f ( f i n i s h e d == numtrialmoves ) {
18 decrement numactivemanagers
19 send MANAGER_FINISHED and packed data to a l l managers
20 continue to next i t e r a t i o n o f the outer loop
21 }
22 i f ( number o f l o c a l t a r g e t s i s too low ) {
23 a c t i v a t e l o c a l t r i g g e r o f load ba l anc in g
24 send LOAD_BALANCING and packed data to a l l managers
25 continue to next i t e r a t i o n o f the outer loop
26 }
27 new_trial_move_OK = f a l s e
28 while ( not new_trial_move_OK ) {
29 s e l e c t new t r i a l move
30 i f ( no c o n f l i c t s r e p o r t e d from remote managers ) {
31 new_trial_move_OK = t r u e
32 }
33 }
34 send NEW_TRIAL_MOVE and packed data to a l l managers
35 }
36 else i f ( message type i s NEW_TRIAL_MOVE) {
37 i f ( data from p r e v i o u s remote t r i a l move i s sent ) {
38 update l o c a l domain
39 }
40 p r o c e s s remote t r i a l move
41 i f ( c o n f l i c t with l o c a l t r i a l move ) {
42 n o t i f y CONFLICT to the sender
43 }
44 else {
45 i f ( remote t r i a l move c o v e r s l o c a l domain ) {
46 c r e a t e sphere o f t r i a l move with l o c a l data
47 }
48 n o t i f y NO_CONFLICT with sphere data i f r e q u i r e d
49 }
50 }
51 else i f ( message type i s FINISHED) {
52 i f ( data from p r e v i o u s remote t r i a l move i s sent ) {
53 update l o c a l domain
54 }
55 decrement numactivemanagers
56 }
57 else i f ( message type i s LOAD_BALANCING) {
58 i f ( data from p r e v i o u s remote t r i a l move i s sent ) {
59 update l o c a l domain
60 }
61 a c t i v a t e l o c a l t r i g g e r o f load ba l anc in g
62 }
63 }
64 }

Figure 6: Manager pseudocode structure of the asynchronous scheduling algorithm for trial

moves using synchronous load balancing.

19





Figure 7. Furthermore, a suitable background concentration of C atoms

(0.01 wt.%) is distributed homogeneously by changing some of the random

virtual atoms into C atoms. The atomic composition consists of 1.04 ×106

Fe atoms, 2.9 ×106 virtual atoms and 500 C atoms.

• Nanoindentation: A defect-free sample cube of volume 50 nm3 is ini-

tially created with the crystallographic orientations, X [1 0 0], Y [0 1 0]

and Z [0 0 1] (cf. Figure 1). The created sample contained bcc-Fe atoms

and virtual atoms at all the octahedral sites. Additionally, a background

concentration of C atoms is introduced at uniformly sampled random oc-

tahedral sites, representative for a homogeneous distribution. As the in-

troduced C atoms create some tetragonal lattice distortion, the crystal

structure is relaxed at temperature T = 0K using Molecular Statics to

minimize the system energy. In the following step, a nanoindentation is

performed using MD [20] on a relaxed sample cube with a spherical inden-

ter of radius 8 nm. Periodic boundary condition are assigned along the X

[1 0 0] and Y [0 1 0] direction. In the Z [0 0 1] direction, the free boundary

condition is applied on the top surface of the sample, and several atomic

layers of thickness 1 nm from the bottom surface is fixed. The spherical

indenter drives into the defect free material in -Z direction at a velocity of

20 m/s for a total duration of 220 ps. Below the contact point of the in-

denter, dislocations are nucleated during the early phase of deformation of

the surface. When the indenter is pressed down further, new dislocations

are generated by nucleation and multiplication mechanism. The existing

dislocations propagate and form a complex dislocation network undergo-

ing further plastic deformation. The simulation box contains 10.72 ×106

Fe atoms, 43.6 ×106 virtual atoms and 2000 C atoms.

In general, the measurements of trial move executions present some sig-

nificant variability because of the use of real defect structures as simulation

systems. The most time consuming part of the MC routine is the relaxation of

the spherical regions associated to each trial move, which may significantly vary

21



depending on the part of the system where these spheres are chosen. Therefore,

in order to provide statistically relevant results, a preliminary analysis of relax-

ation times for many thousands of trial moves has been performed on the target

systems. This analysis indicated that, for all the studied cases, at least 90% of

all trial moves in any of the systems used 700 or fewer relaxation steps to get

the spherical regions converged, regardless of the system used. Considering this

fact, and with the aim of obtaining reliable execution times by minimizing the

impact of very long relaxations, the IMD library has been configured to allow a

maximum of 1000 relaxation steps per trial move. In this evaluation, the results

from Figures 8 and 9 have been obtained according to this principle.

The tests accomplished in this performance evaluation have been classified in

two types of comparison: (1) general vs. distributed manager-worker approaches

with different systems and amounts of processes, and (2) use of local vs. non-

local trial moves.

4.1. Comparison of manager-worker algorithms

The number of worker processes is set as the reference value for this per-

formance comparison. Therefore, the total number of MPI processes (sum of

managers and workers) used for the simulations varies depending on the number

of managers used by the algorithm. As an example, a performance result with N

workers means that the corresponding test case with the general manager-worker

has N + 1 processes, whereas the same test case with the distributed manager-

worker has 2N processes). All test cases in this evaluation have been executed

using up to 16 processes (managers + workers) per computing node. Conse-

quently, the executions with the distributed manager-worker for 16 or more

workers occupy twice the amount of computing nodes as the general manager-

worker (in tests up to 8 workers, both algorithms only occupy one computing

node).

Figure 8 presents the execution times of the general and distributed manager-

worker approaches for the simulation of up to 4000 trial moves using the cylin-

drical disc system and with a different number of worker processes: one graph

22



 10

 100

 1  2  4  8  16

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
) 

x
 1

0
0
0

Number of Worker Processes

Cylindric Disc - 4000 trial moves - strong scaling

General M-W

Distributed M-W

 10

 100

 1  2  4  8

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
) 

x
 1

0
0
0

Number of Worker Processes

Cylindric Disc - 500 trial moves per worker - weak scaling

General M-W

Distributed M-W

Figure 8: Strong and weak scaling tests for general and distributed manager-worker algorithms

with the cylindrical disc.

23



shows strong scaling results, whereas the other includes the weak scaling results

for the execution of 500 trial moves per process. The performance measure-

ments indicate that the general manager-worker approach is performing more

efficiently for up to 4 worker processes, but the results with 8 workers are better

for the distributed manager-worker. Nevertheless, the latter algorithm cannot

get to execute this system with a larger amount of workers because of the lim-

itation of not allowing overlapping trial moves among different workers (i.e.,

no speculative execution is considered): it is not possible to guarantee that

there is enough space to fit, e.g., 16 concurrent trial moves executions inside the

cylindrical disc considering the random distribution of C atoms and the random

selection of samples. This overlap limitation has been introduced for simplic-

ity in the implementation of the distributed domain update for the different

managers, and it is also one reason why the general manager-worker performs

better, apart from the fact that the system size is quite manageable for a single

manager with a couple of workers.

Despite the restriction in the number of workers, it is important to note

that the distributed manager-worker obtains a performance result for 8 workers

that is comparable to the general manager-worker with 16 workers (i.e., in two

test cases where both algorithms have the very similar amount of processes:

16 and 17, respectively). This indicates that a large amount of workers does

not directly imply higher efficiency because of the spatial conflicts between trial

moves, especially in the case when many conflicts and even chains of dependen-

cies between trial moves need to be solved: a conflict between trial moves that

are accepted may imply that one or more trial moves have to be discarded and

recalculated, as mentioned in Section 3.1.

Figure 9 shows the execution times using the nanoindentation system for

both general and distributed manager-worker on 800 trial moves. The results up

to 4 workers are quite similar for the two tested algorithms, but the distributed

manager-worker outperforms the general version when 8 or more workers are

used. This situation is mainly due to the system size: the only manager of the

general algorithm has to perform random accesses to gather sphere information

24



in a quite large system, and this overhead adds up to the bottleneck of accessing

the same manager by every worker, as in the previous case of Figure 8. This

effect of the system size is by definition not present in the distributed algorithm

because of the domain decomposition and communications, and the results in

this graph show that the overhead of communications is still low compared

to the management workload. Considering the worst-case scenario when all

C atoms are shuffled after load balancing and no local information from the

manager can be used for the execution of a local trial move, the maximum

communication size between two managers is the size of two spheres, and this

is never dependent on system size, but on the system type (Fe-C). Additionally,

the distributed algorithm uses the underlying cell-based framework with tailored

block definitions according to the size of a sphere [24], which also helps to obtain

a more efficient sphere construction. As a result, the tests confirm the potential

benefits of the distributed manager-worker approach for large systems.

 1

 10

 1  2  4  8  16  32  64  128

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
) 

x
 1

0
0
0

Number of Worker Processes

Nanoindentation - 800 trial moves - strong scaling

General M-W

Distributed M-W

Figure 9: Strong scaling test for general and distributed manager-worker algorithms with the

nanoindentation.

It is especially remarkable that the result of the distributed manager-worker

with 16 workers is better even than the test cases with the general manager-

25



worker with 128 workers, and also that the results for 64 workers with the

general algorithm are worse than with 32 and 128 workers. To clarify this be-

havior, Table 1 compares the execution time results shown in Figure 9 with

the same tests obtained with just one less worker process (second and fourth

columns, starting from the left). The third and fifth columns present the number

of conflicts between trial moves associated with the previous tests, respectively.

The comparative results indicate that the use of an odd number of MPI pro-

cesses in the first column (65 processes) represents a drawback for performance

when using more than two computing nodes with the general manager-worker

approach (i.e., for 64 or more processes), because of an even number of processes

allows more efficient matching with the underlying computer architecture, thus

better intra-node performance. Analogously to this, when up to 32 workers are

used, the performance achieved with n − 1 workers causes a performance loss

concerning n workers.

Another factor that influences the performance variation is related to the

number of conflicts for the general manager-worker algorithm, because of dis-

carded trial move executions: when the number of conflicts goes to thousands,

there is a much higher chance of recalculation of trial moves and additional

inter-process communications than with the hundreds of conflicts.

The main drawback here is that the influence of these facts is very hard

to measure or predict quantitatively because of the inherently random nature

of the trial moves and the scheduling system of the manager, i.e., the number

of conflicts only implies a proportional probability of influence in the execution

time. Thus, it may effectively appear as the number of conflicts increases in

orders of magnitude. In the case of the distributed manager-worker, conflicts

are directly avoided because of no conflicting trial moves are allowed to be

executed in parallel, so these problems do not exist.

In general, for the simulation of relatively small to medium sized systems, the

general manager-worker gets good performance and allows scaling up to several

workers. The possible execution of overlapping trial moves controlled centrally

by one manager also represents the advantage of this approach over the domain

26



n 1M + nW Num.Conflicts 1M + (n − 1)W Num.Conflicts

16 4219.94 182 4533.43 171

32 4473.45 1042 5185.41 886

64 5314.83 1397 4531.45 1910

128 3538.71 1854 3374.60 1652

Table 1: Performance details for the nanoindentation simulation with the general manager-

worker approach. The execution times according to the number of manager (M) and worker

(W) processes is shown in columns 1 and 3, and columns 2 and 4 contain their respective

numbers of conflicts between trial moves.

decomposition. Nevertheless, for the case of the cylindrical disc, the efficiency

decreases as both the number of workers and system size grow. The results of

the distributed manager-worker imply the need for a good ratio between the

volume covered by the simultaneous trial move computations (which is related

to the number of managers and workers) and the total system size. Regardless

of the system size, just the use of a large number of simultaneous managers

can cause a randomly large amount of conflicts, which may imply a significant

performance drop. This fact is less striking when the overlap between different

trial moves is not allowed, because it may be possible to generate another trial

move in a different part of a large system. Overall, it is clearly shown that

the scalability of the distributed manager-worker algorithm comes at the cost

of using a larger number of manager processes, but each of them performs less

intense management tasks than the single manager in the general approach:

consequently, the tradeoff between used cores and algorithm performance is

positive.

4.2. Comparison of local and non-local trial moves

The parallel computation of trial moves is also tested using the definition of a

trial radius, which represents a limitation in the distance of the two spheres that

define each trial move. Therefore, this new parameter allows for C atoms to be

swapped with virtual atoms within a given radius. The goal of this comparison

27





figuration, containing 0.01 wt.% of randomly distributed C atoms. Here it is

possible to observe a different C distribution for the MC algorithm according to

the underlying trial radius. In case of a non-local trial radius, the configuration

space gets explored faster, and C atoms initially located far away from the dis-

location (lower half of the crystal structure) are able to segregate to the upper

half, which contains the defect region with higher lattice distortion. Moreover,

it is observed than an increase in the trial radius leads to a higher C concentra-

tion near the core of the dislocation networks and the indented surface, where

major plastic deformation occurred. However, the simulation with smallest trial

radius (2 nm) shows a nearly homogeneous distribution of C atoms after the

same number of MC steps: this fact indicates that it is necessary to perform

a larger number of trial moves for the case of a small trial radius to move a

C atom over a large distance (e.g., if it was located initially at the bottom of

the system), whereas this movement could have been achieved with a single

accepted trial move if no trial radius had been defined.

On the other hand, Figure 11 illustrates the evolution of the total energy

of the nanoindentation using two types of system configurations: (1) a ran-

dom C distribution, corresponding to the initial configuration, and (2) a non-

homogeneous distribution of C atoms, corresponding to an MC simulation with

170000 non-local trial moves. In the latter case, the system has already achieved

a state in which the C atoms are getting closer to their optimal distribution for

the minimization of the total system energy. Starting from these configurations,

6000 additional non-local trial moves in the one case and with a trial radius of

3.5 nm in the other case have been executed. In the system with random C

distribution, the energy reduces quickly, as the atoms are far from the optimal

energy and a large number of trial moves is likely to reduce the system energy.

29



-2500

-2250

-2000

-1750

-1500

-1250

-1000

-750

-500

-250

 0

 0  1  2  3  4  5  6

G
lo

b
a
l 
P

o
te

n
ti

a
l 
E

n
e
rg

y
 D

if
fe

re
n

c
e
 (

e
V

)

Number of Monte-Carlo Trial Moves x 1000

Cylindric Disc - 12000 trial moves - energy comparison

Non-Local Moves - random distibution of C

Local Moves - random distibution of C

-225

-200

-175

-150

-125

-100

-75

-50

-25

 0

 0  1  2  3  4  5  6

G
lo

b
a
l 
P

o
te

n
ti

a
l 
E

n
e
rg

y
 D

if
fe

re
n

c
e
 (

e
V

)

Number of Monte-Carlo Trial Moves x 1000

Cylindric Disc - 12000 trial moves - energy comparison

Non-Local Moves- after 170000 trial moves

Local Moves - after 170000 trial moves

Figure 11: Potential energy variation for the nanoindentation system with the initial random

distribution of C and the same nanoindentation after a previous execution of 170000 trial

moves. On top of both system configurations, 6000 trial moves are executed and the global

energy variation of the system is measured.

30



This convergence is faster for the non-local moves, which is coherent with the

results shown in Figure 10. Nevertheless, the execution of 6000 trial moves in

the non-homogeneous configuration shows a highly more optimal energy mini-

mization when the trial radius is finite, which is due to the location of the C

atoms. As many C atoms have already been swapped to a position close to

the dislocation network, it is statistically much more likely that these atoms

find an energetically more preferable position in the local neighborhood than

in a randomly chosen part of the system. It is obvious that, in this case, the

algorithm has a remarkably lower relaxation time to reach the minimum for the

non-local case.

5. Conclusions and future work

This work has presented the comparison of different algorithms for the sim-

ulation of Monte Carlo trial moves within a coupling scheme that models C

segregation in ferritic structures by swapping the location of C atoms using vir-

tual atoms. The high computational demand of the simulation requires the use

of a parallelization scheme based on a distributed model, which has been ac-

complished using MPI following two approaches: (1) a general manager-worker,

with one manager process and many associated worker processes, and (2) a

distributed manager-worker, which has many managers and each of them with

only has one associated worker. The performance of both algorithms is studied

using two main structures with defects (a cylindrical disc and nanoindentation)

using up to more than a hundred MPI processes and different trial radii for the

range definition of trial moves.

The performance analysis has presented the quantitative comparison be-

tween the different parallel algorithms with respect to the size of the system

and the number of managers and workers. The results indicate that, for small

systems, the use of one manager and a few associated worker processes is ben-

eficial, in such a way that the manager can have faster access to the global

knowledge of the system and define a simple and efficient communication pro-

31



tocol for the parallel execution of trial moves. Nevertheless, the simulation of C

segregation on large systems requires a more scalable approach in the aspects of

memory and protocol management, so that an increase in the number of workers

can be managed efficiently. In this aspect, the tests with the nanoindentation

have shown that the simulation does benefit from the use of a domain defini-

tion using blocks and cells with sizes adapted to the properties of the system.

Moreover, the statistical efficiency of the Monte Carlo procedure has shown to

be optimal by choosing random C and virtual atoms for trial move executions

on an initial system with random C distribution, but after a large number of

executed trial moves, the efficiency increases significantly with the definition of

a maximum radius for the distance between the selected atoms in every trial

move, i.e., performing local trial moves.

Further developments in this research will cover the implementation of a

fully asynchronous scheme for the distributed manager-worker, alongside with

a suitable work sharing/stealing routine to change the number of trial moves

assigned during runtime or a distributed protocol for the job queue, either using

a tailor-made algorithm or additional libraries, such as ADLB [26]. Additionally,

the definition of a trigger to switch on a trial radius should be implemented by

runtime analysis of statistical information from previous trial moves during a

long simulation, and the effective communication between subsets of managers

will take the performance of the distributed algorithm to its peak. Therefore,

the combination of general and distributed manager-worker algorithms enhanced

with runtime information about convergence may represent an optimal approach

for solute segregation modeling using the MD-MC coupling method.

6. Acknowledgments

The authors gratefully acknowledge the funding from Deutsche Forschungs

Gemeinschaft (DFG) - BE 5360/1-1 and ThyssenKrupp Europe. They also

gratefully acknowledge the computing time granted through JARA-HPC on the

supercomputer JURECA at Forschungszentrum Jülich.

32



7. Data availability

The raw/processed data required to reproduce these findings cannot be

shared at this time as the data also forms part of an ongoing study.

References

[1] M. A. Meyers, K. K. Chawla, Mechanical Behavior of Materials, Cambridge

University Press, 2008.

[2] A. Cottrell, B. Bilby, Dislocation theory of yielding and strain ageing of

iron, Proceedings of the Physical Society. Section A 62 (1) (1949) 49.

[3] D. Sourav, S. Shiv Brat, M. Omkar Nath, Encyclopedia of Iron, Steel, and

Their Alloys, Taylor and Francis, 2016.

[4] C. A. Wert, Diffusion coefficient of C in α-iron, Phys. Rev. 79 (1950) 601–

605.

[5] M. P. Allen, D. J. Tildesley, Computer simulation of liquids, Oxford Uni-

versity Press, 1989.

[6] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller,

Equation of state calculations by fast computing machines, The Journal of

Chemical Physics 21 (6) (1953) 1087–1092.

[7] H. Ganesan, C. Begau, G. Sutmann, MC/MD Coupling for Scale Bridging

Simulations of Solute Segregation in Solids: An Application Study, Com-

munications in Computer and Information Science 889 (2017) 112–127.

[8] A. Moatti, J. Goldberg, G. Memmi, Parallel Monte Carlo calculations with

many microcomputers, Computer Physics Communications 45 (1-3) (1987)

355–359.

[9] D. M. Jones, J. M. Goodfellow, Parallelization strategies for molecular

simulation using the Monte Carlo algorithm, Journal of Computational

Chemistry 14 (2) (1993) 127–137.

33



[10] K. Esselink, L. Loyens, B. Smit, Parallel Monte Carlo simulations, Physical

Review E 51 (2) (1995) 1560.

[11] S. Dietrich, I. D. Boyd, Scalar and parallel optimized implementation of the

direct simulation Monte Carlo method, Journal of Computational Physics

126 (2) (1996) 328–342.

[12] G. LeBeau, A parallel implementation of the direct simulation Monte Carlo

method, Computer Methods in Applied Mechanics and Engineering 174 (3)

(1999) 319–337.

[13] B. Sadigh, P. Erhart, A. Stukowski, A. Caro, E. Martinez, L. Zepeda-

Ruiz, Scalable parallel Monte Carlo algorithm for atomistic simulations of

precipitation in alloys, Physical Review B 85 (18) (2012) 184203.

[14] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics,

J. Comput. Phys. 117 (1) (1995) 1–19.

[15] T. Karakasidis, N. Cholevas, A. Liakopoulos, Parallel short range molecular

dynamics simulations on computer clusters: Performance evaluation and

modeling, Mathematical and Computer Modelling 42 (7-8) (2005) 783–798.

[16] N. English, J. Tse, Massively parallel molecular dynamics simulation of

formation of ice-crystallite precursors in supercooled water: Incipient-

nucleation behavior and role of system size, Phys. Rev. E 92 (3) (2015)

032132.

[17] M. S. Daw, M. I. Baskes, Embedded-atom method: Derivation and appli-

cation to impurities, surfaces, and other defects in metals, Physical Review

B 29 (12) (1984) 6443.

[18] A. Uhlherr, S. Leak, N. Adam, P. Nyberg, M. Doxastakis, V. Mavrantzas,

D. Theodorou, Large scale atomistic polymer simulations using Monte

Carlo methods for parallel vector processors, Computer Physics Commu-

nications 144 (1) (2002) 1–22.

34



[19] V. I. Yamakov, Parallel grand canonical Monte Carlo (ParaGrandMC) sim-

ulation code, https://ntrs.nasa.gov/search.jsp?R=20160007416 (2016).

[20] J. Stadler, R. Mikulla, H.-R. Trebin, IMD: A software package for molecular

dynamics studies on parallel computers, International Journal of Modern

Physics C 8 (05) (1997) 1131–1140.

[21] Message Passing Interface Forum, MPI: A Message-Passing Interface Stan-

dard Version 3.0, http://mpi-forum.org/mpi-30/ (Sep. 2012).

[22] G. Sutmann, H. Ganesan, C. Begau, Cluster formation in stochastic disk

systems, in: AIP Conference Proceedings, Vol. 1863, AIP Publishing, 2017,

p. 560089.

[23] H. Ganesan, C. Begau, G. Sutmann, Parallel hybrid Monte Carlo method

for segregation of interstitial atoms in the solid state, [in preparation].

[24] C. Teijeiro, H. Ganesan, R. Halver, W. Homberg, G. Sutmann, Towards

a flexible cell-based framework for parallel scale-bridging simulations in

materials science: a first case study, in: 5th Intl. Conference on Parallel,

Distributed, Grid and Cloud Computing for Engineering (PARENG’17),

Pécs (Hungary), 2017, paper 24.

[25] C. Begau, G. Sutmann, Adaptive dynamic load balancing with irregular

domain decomposition for particle simulations, Computer Physics Com-

munications 190 (2015) 5161.

[26] ADLB: Asynchronous Dynamic Load Balancing, https://www.cs.mtsu.

edu/~rbutler/adlb/ (Accessed May 2017).

35


