000851739 001__ 851739
000851739 005__ 20220930130157.0
000851739 0247_ $$2doi$$a10.1038/s41598-018-31806-7
000851739 0247_ $$2Handle$$a2128/19671
000851739 0247_ $$2pmid$$apmid:30190592
000851739 0247_ $$2WOS$$aWOS:000443801300002
000851739 0247_ $$2altmetric$$aaltmetric:48473908
000851739 037__ $$aFZJ-2018-05266
000851739 082__ $$a000
000851739 1001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b0$$eCorresponding author
000851739 245__ $$aPredicting IDH genotype in gliomas using FET PET radiomics
000851739 260__ $$aLondon$$bNature Publishing Group$$c2018
000851739 3367_ $$2DRIVER$$aarticle
000851739 3367_ $$2DataCite$$aOutput Types/Journal article
000851739 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1537189628_4136
000851739 3367_ $$2BibTeX$$aARTICLE
000851739 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851739 3367_ $$00$$2EndNote$$aJournal Article
000851739 520__ $$aMutations in the isocitrate dehydrogenase (IDH mut) gene have gained paramount importance for the prognosis of glioma patients. To date, reliable techniques for a preoperative evaluation of IDH genotype remain scarce. Therefore, we investigated the potential of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET radiomics using textural features combined with static and dynamic parameters of FET uptake for noninvasive prediction of IDH genotype. Prior to surgery, 84 patients with newly diagnosed and untreated gliomas underwent FET PET using a standard scanner (15 of 56 patients with IDH mut) or a dedicated high-resolution hybrid PET/MR scanner (11 of 28 patients with IDH mut). Static, dynamic and textural parameters of FET uptake in the tumor area were evaluated. Diagnostic accuracy of the parameters was evaluated using the neuropathological result as reference. Additionally, FET PET and textural parameters were combined to further increase the diagnostic accuracy. The resulting models were validated using cross-validation. Independent of scanner type, the combination of standard PET parameters with textural features increased significantly diagnostic accuracy. The highest diagnostic accuracy of 93% for prediction of IDH genotype was achieved with the hybrid PET/MR scanner. Our findings suggest that the combination of conventional FET PET parameters with textural features provides important diagnostic information for the non-invasive prediction of the IDH genotype.
000851739 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000851739 588__ $$aDataset connected to CrossRef
000851739 7001_ $$0P:(DE-Juel1)164254$$aLerche, Christoph$$b1
000851739 7001_ $$0P:(DE-HGF)0$$aBauer, Elena K.$$b2
000851739 7001_ $$0P:(DE-HGF)0$$aSteger, Jan$$b3
000851739 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b4
000851739 7001_ $$0P:(DE-HGF)0$$aBlau, Tobias$$b5
000851739 7001_ $$0P:(DE-Juel1)156211$$aDunkl, Veronika$$b6
000851739 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b7
000851739 7001_ $$0P:(DE-Juel1)162395$$aViswanathan, Shivakumar$$b8
000851739 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian$$b9
000851739 7001_ $$0P:(DE-Juel1)156479$$aStegmayr, Carina$$b10
000851739 7001_ $$0P:(DE-HGF)0$$aRuge, Maximillian I.$$b11
000851739 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b12
000851739 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim J.$$b13
000851739 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b14
000851739 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b15
000851739 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b16
000851739 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-018-31806-7$$gVol. 8, no. 1, p. 13328$$n1$$p13328$$tScientific reports$$v8$$x2045-2322$$y2018
000851739 8564_ $$uhttps://juser.fz-juelich.de/record/851739/files/30034893030008218619INVOIC2676116464001.pdf
000851739 8564_ $$uhttps://juser.fz-juelich.de/record/851739/files/30034893030008218619INVOIC2676116464001.pdf?subformat=pdfa$$xpdfa
000851739 8564_ $$uhttps://juser.fz-juelich.de/record/851739/files/s41598-018-31806-7.pdf$$yOpenAccess
000851739 8564_ $$uhttps://juser.fz-juelich.de/record/851739/files/s41598-018-31806-7.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851739 8767_ $$82676116464$$92018-08-28$$d2018-09-17$$eAPC$$jZahlung erfolgt$$pSREP-18-08618B$$zFZJ-2018-05172
000851739 909CO $$ooai:juser.fz-juelich.de:851739$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b0$$kFZJ
000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b1$$kFZJ
000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b4$$kFZJ
000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b7$$kFZJ
000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162395$$aForschungszentrum Jülich$$b8$$kFZJ
000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b9$$kFZJ
000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156479$$aForschungszentrum Jülich$$b10$$kFZJ
000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b12$$kFZJ
000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b13$$kFZJ
000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b14$$kFZJ
000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b15$$kFZJ
000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b16$$kFZJ
000851739 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000851739 9141_ $$y2018
000851739 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851739 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000851739 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000851739 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000851739 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000851739 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000851739 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000851739 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000851739 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851739 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851739 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851739 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851739 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851739 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851739 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851739 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851739 920__ $$lyes
000851739 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000851739 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000851739 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x2
000851739 980__ $$ajournal
000851739 980__ $$aVDB
000851739 980__ $$aI:(DE-Juel1)INM-3-20090406
000851739 980__ $$aI:(DE-Juel1)INM-4-20090406
000851739 980__ $$aI:(DE-Juel1)INM-5-20090406
000851739 980__ $$aAPC
000851739 980__ $$aUNRESTRICTED
000851739 9801_ $$aAPC
000851739 9801_ $$aFullTexts