000851739 001__ 851739 000851739 005__ 20220930130157.0 000851739 0247_ $$2doi$$a10.1038/s41598-018-31806-7 000851739 0247_ $$2Handle$$a2128/19671 000851739 0247_ $$2pmid$$apmid:30190592 000851739 0247_ $$2WOS$$aWOS:000443801300002 000851739 0247_ $$2altmetric$$aaltmetric:48473908 000851739 037__ $$aFZJ-2018-05266 000851739 082__ $$a000 000851739 1001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b0$$eCorresponding author 000851739 245__ $$aPredicting IDH genotype in gliomas using FET PET radiomics 000851739 260__ $$aLondon$$bNature Publishing Group$$c2018 000851739 3367_ $$2DRIVER$$aarticle 000851739 3367_ $$2DataCite$$aOutput Types/Journal article 000851739 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1537189628_4136 000851739 3367_ $$2BibTeX$$aARTICLE 000851739 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000851739 3367_ $$00$$2EndNote$$aJournal Article 000851739 520__ $$aMutations in the isocitrate dehydrogenase (IDH mut) gene have gained paramount importance for the prognosis of glioma patients. To date, reliable techniques for a preoperative evaluation of IDH genotype remain scarce. Therefore, we investigated the potential of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET radiomics using textural features combined with static and dynamic parameters of FET uptake for noninvasive prediction of IDH genotype. Prior to surgery, 84 patients with newly diagnosed and untreated gliomas underwent FET PET using a standard scanner (15 of 56 patients with IDH mut) or a dedicated high-resolution hybrid PET/MR scanner (11 of 28 patients with IDH mut). Static, dynamic and textural parameters of FET uptake in the tumor area were evaluated. Diagnostic accuracy of the parameters was evaluated using the neuropathological result as reference. Additionally, FET PET and textural parameters were combined to further increase the diagnostic accuracy. The resulting models were validated using cross-validation. Independent of scanner type, the combination of standard PET parameters with textural features increased significantly diagnostic accuracy. The highest diagnostic accuracy of 93% for prediction of IDH genotype was achieved with the hybrid PET/MR scanner. Our findings suggest that the combination of conventional FET PET parameters with textural features provides important diagnostic information for the non-invasive prediction of the IDH genotype. 000851739 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0 000851739 588__ $$aDataset connected to CrossRef 000851739 7001_ $$0P:(DE-Juel1)164254$$aLerche, Christoph$$b1 000851739 7001_ $$0P:(DE-HGF)0$$aBauer, Elena K.$$b2 000851739 7001_ $$0P:(DE-HGF)0$$aSteger, Jan$$b3 000851739 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b4 000851739 7001_ $$0P:(DE-HGF)0$$aBlau, Tobias$$b5 000851739 7001_ $$0P:(DE-Juel1)156211$$aDunkl, Veronika$$b6 000851739 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b7 000851739 7001_ $$0P:(DE-Juel1)162395$$aViswanathan, Shivakumar$$b8 000851739 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian$$b9 000851739 7001_ $$0P:(DE-Juel1)156479$$aStegmayr, Carina$$b10 000851739 7001_ $$0P:(DE-HGF)0$$aRuge, Maximillian I.$$b11 000851739 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b12 000851739 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim J.$$b13 000851739 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b14 000851739 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b15 000851739 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b16 000851739 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-018-31806-7$$gVol. 8, no. 1, p. 13328$$n1$$p13328$$tScientific reports$$v8$$x2045-2322$$y2018 000851739 8564_ $$uhttps://juser.fz-juelich.de/record/851739/files/30034893030008218619INVOIC2676116464001.pdf 000851739 8564_ $$uhttps://juser.fz-juelich.de/record/851739/files/30034893030008218619INVOIC2676116464001.pdf?subformat=pdfa$$xpdfa 000851739 8564_ $$uhttps://juser.fz-juelich.de/record/851739/files/s41598-018-31806-7.pdf$$yOpenAccess 000851739 8564_ $$uhttps://juser.fz-juelich.de/record/851739/files/s41598-018-31806-7.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000851739 8767_ $$82676116464$$92018-08-28$$d2018-09-17$$eAPC$$jZahlung erfolgt$$pSREP-18-08618B$$zFZJ-2018-05172 000851739 909CO $$ooai:juser.fz-juelich.de:851739$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery 000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b0$$kFZJ 000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b1$$kFZJ 000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b4$$kFZJ 000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b7$$kFZJ 000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162395$$aForschungszentrum Jülich$$b8$$kFZJ 000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b9$$kFZJ 000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156479$$aForschungszentrum Jülich$$b10$$kFZJ 000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b12$$kFZJ 000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b13$$kFZJ 000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b14$$kFZJ 000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b15$$kFZJ 000851739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b16$$kFZJ 000851739 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0 000851739 9141_ $$y2018 000851739 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000851739 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000851739 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000851739 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000851739 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015 000851739 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015 000851739 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000851739 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000851739 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000851739 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000851739 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000851739 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000851739 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000851739 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000851739 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000851739 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000851739 920__ $$lyes 000851739 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 000851739 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1 000851739 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x2 000851739 980__ $$ajournal 000851739 980__ $$aVDB 000851739 980__ $$aI:(DE-Juel1)INM-3-20090406 000851739 980__ $$aI:(DE-Juel1)INM-4-20090406 000851739 980__ $$aI:(DE-Juel1)INM-5-20090406 000851739 980__ $$aAPC 000851739 980__ $$aUNRESTRICTED 000851739 9801_ $$aAPC 000851739 9801_ $$aFullTexts