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Predicting IDH genotype in gliomas 
using FET PET radiomics
Philipp Lohmann   1,2, Christoph Lerche1, Elena K. Bauer3, Jan Steger3, Gabriele Stoffels1, 
Tobias Blau4, Veronika Dunkl3, Martin Kocher1,2, Shivakumar Viswanathan   1, 
Christian P. Filss1, Carina Stegmayr1, Maximillian I. Ruge2, Bernd Neumaier   1, 
Nadim J. Shah1,5, Gereon R. Fink1,3, Karl-Josef Langen1,6 & Norbert Galldiks1,3,7

Mutations in the isocitrate dehydrogenase (IDH mut) gene have gained paramount importance for the 
prognosis of glioma patients. To date, reliable techniques for a preoperative evaluation of IDH genotype 
remain scarce. Therefore, we investigated the potential of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) 
PET radiomics using textural features combined with static and dynamic parameters of FET uptake 
for noninvasive prediction of IDH genotype. Prior to surgery, 84 patients with newly diagnosed and 
untreated gliomas underwent FET PET using a standard scanner (15 of 56 patients with IDH mut) or a 
dedicated high-resolution hybrid PET/MR scanner (11 of 28 patients with IDH mut). Static, dynamic 
and textural parameters of FET uptake in the tumor area were evaluated. Diagnostic accuracy of the 
parameters was evaluated using the neuropathological result as reference. Additionally, FET PET and 
textural parameters were combined to further increase the diagnostic accuracy. The resulting models 
were validated using cross-validation. Independent of scanner type, the combination of standard PET 
parameters with textural features increased significantly diagnostic accuracy. The highest diagnostic 
accuracy of 93% for prediction of IDH genotype was achieved with the hybrid PET/MR scanner. Our 
findings suggest that the combination of conventional FET PET parameters with textural features 
provides important diagnostic information for the non-invasive prediction of the IDH genotype.

Since the recent update of the World Health Organization (WHO) Classification of Tumors of the Central 
Nervous System1, the revised classification now integrates histology and molecular features, particularly giv-
ing pivotal attention to the isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion, which allow a 
prediction of the individual response to therapy2–4. Furthermore, the inclusion of the IDH mutation status ena-
bles an improved assessment of the individual prognosis, compared to the WHO grades defined by the 2007 
classification1,2,5–7.

IDH mutations (mut) are frequently observed in lower-grade gliomas (WHO grades II and III) and second-
ary glioblastomas (GBM)8. In contrast, IDH mutations in primary GBM are rare8. From a clinical point of view, 
most IDH wild type (wt) lower-grade gliomas are comparable to GBM7,8. Furthermore, GBM patients with IDH 
mutations have a significantly longer overall survival compared to their IDH wt counterparts (31 months vs. 15 
months)7. Moreover, current guidelines recommend that treatment decisions should be based on the IDH status 
and 1p/19q co-deletion9. However, to date tissue samples are inevitable if one wants to assess the IDH status. 
Hence, a reliable method for the non-invasive assessment of the IDH genotype is of great interest. Magnetic 
resonance spectroscopy has already been used for the detection of 2-hydroxyglutarate (2-HG), a specific tumor 
metabolite present in IDH mut gliomas10. However, measurements of 2-HG in clinical routine are challenging 
due to the very small and complex signals of the metabolite11,12.

Currently, textural feature analysis in the context of radiomics increasingly gain attraction in Oncology and 
Neuro-Oncology and has already been applied for the identification of the IDH mutational status in patients 
with WHO grade II gliomas according to fluid attenuated inversion recovery (FLAIR) MR images13 as well as 
in patients with WHO grade II and III gliomas based on MR diffusion tensor imaging14. Furthermore, textural 
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feature analysis of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET images has been used for glioma grading15, diag-
nosis of pseudoprogression in high-grade gliomas16, and the differentiation of radiation-induced changes from 
brain metastasis recurrence17. Figure 1 illustrates the basic fundamental processing steps and the general concept 
of textural feature analysis.

Figure 1.  What are textural features? In this example, the basic processing steps and the principle of textural 
feature analysis is illustrated. The feature Intensity Variability used in the example describes areas of similar 
intensity and is a measure of image (or tumor) heterogeneity; equivalent to the parameter Grey-Level Non-
Uniformity for zone (GLNUz) used in the manuscript. Index H represents the number of homogenous zones in 
the volume of interest.
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Goal of our study was the evaluation of FET PET textural features compared to and in combination with static 
and dynamic FET PET parameters for the preoperative differentiation of IDH mut from IDH wt gliomas.

Results
Based on the results from the neuropathological assessment of the IDH status, 26 gliomas (31%) were IDH mut 
and 58 (69%) were IDH wt. From the 56 patients scanned on the stand-alone PET scanner, 15 (27%) had IDH mut 
gliomas and the remaining 41 (73%) patients had an IDH wt. From the 28 patients measured on the hybrid PET/
MR scanner, 11 (39%) had IDH mut gliomas and the remaining 17 (61%) patients had an IDH wt. Further details 
are provided in Table 1 and Fig. 2. A summary of the conventional FET PET parameters for all three patient 
groups is provided in Table 2.

Complete Patient Cohort (84 Patients)
Prediction of the IDH status based on FET PET standard parameters.  The parameter slope (slope 
of linear regression line evaluated 20–50 min post-injection) had the highest accuracy to predict the IDH geno-
type (accuracy, 80%; AUC, 0.79 ± 0.05; sensitivity, 58%; specificity, 90%; p < 0.01). The other standard parameters 
time-to-peak (TTP; time in minutes from the beginning of the dynamic acquisition up to the maximum SUV of 
the lesion), mean tumor-to-brain ratio (TBRmean) and maximum tumor-to-brain ratio (TBRmax) lead to diagnostic 
accuracies within the range of 71–73%. A summary of the results is provided in Supplementary Table 1.

Patient cohort All
Subgroup I (Stand-
alone PET)

Subgroup II 
(Hybrid PET/MR)

Patients 84 56 28

Gender, f/m 34/50 24/32 10/18

Mean age ± SD 54 ± 14 y 55 ± 13 y 50 ± 16 y

Age range 22–76 y 23–76 y 22–76 y

IDH genotype, wt/mut 58/26 41/15 17/11

WHO grade II (wt/mut) 7 (1/6) 5 (0/5) 2 (1/1)

WHO grade III (wt/mut) 26 (11/15) 17 (10/7) 9 (1/8)

WHO grade IV (wt/mut) 51 (46/5) 34 (31/3) 17 (15/2)

Table 1.  Demographic and clinical data of all patients.

Figure 2.  Patient cohort and distribution of IDH genotypes and WHO grades.

Patient cohort

All Subgroup I (Stand-alone PET) Subgroup II (Hybrid PET/MR)

IDH wt IDH mut p IDH wt IDH mut p IDH wt IDH mut p

TBRmean ± SD 2.2 ± 0.3 2.1 ± 0.5 0.25 2.2 ± 0.3 2.3 ± 0.5 0.02 2.3 ± 0.5 1.9 ± 0.2 0.13

TBRmax ± SD 4.1 ± 1.2 3.9 ± 1.3 0.43 4.1 ± 1.1 4.3 ± 1.4 0.35 4.2 ± 1.4 3.3 ± 1.0 0.41

Slope [SUV/h] ± SD −0.3 ± 0.5 0.3 ± 0.4 0.40 −0.2 ± 0.5 0.2 ± 0.5 0.55 −0.4 ± 0.6 0.3 ± 0.3 0.01

TTP [min] 28.2 ± 10.3 37.3 ± 7.4 0.01 28.0 ± 9.6 39.2 ± 7.7 0.40 28.7 ± 12.2 34.8 ± 6.5 <0.01

Table 2.  Summary of conventional FET PET parameters. TBR: tumor-to brain ratio; TTP: time to peak.
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Prediction of the IDH status based on FET PET textural features.  The histogram-based parameter 
skewness (SkewnessH) and the parameter long run high grey-level emphasis (LRHGE) had the highest diagnostic 
accuracy for predicting IDH genotype (SkewnessH: accuracy, 71%; AUC, 0.53 ± 0.07; sensitivity, 31%; specificity, 
90%; p = 0.66; LRHGE: accuracy, 71%; AUC, 0.52 ± 0.07; sensitivity, 8%; specificity, 100%; p = 0.75). The diagnos-
tic accuracies of the other textural features were within the range of 52–70%. A summary of the results is provided 
in Supplementary Table 1.

Prediction of the IDH status based on combination of parameters.  The combination of the stand-
ard parameter slope with the textural feature short zone high grey-level emphasis (SZHGE) slightly increased 
the diagnostic accuracy to 81% (sensitivity, 54%; specificity, 93%; p < 0.01). The overall accuracy of the model 
validation was 79% after 5-fold cross-validation and 80% after 10-fold cross-validation. Further details on the 
model performance and the validation are provided in Table 3. Other combinations did not further increase the 
diagnostic accuracy. The results are summarized in Supplementary Table 4 and Fig. 3.

Subgroup I – 56 Patients Examined on the Stand-Alone PET Scanner
Prediction of the IDH status based on FET PET standard parameters.  The parameters slope and 
TTP had the highest diagnostic accuracy to predict the IDH genotype (slope: accuracy, 80%; AUC, 0.74 ± 0.07; 
sensitivity, 53%; specificity, 90%; p = 0.01; TTP: accuracy, 80%; AUC, 0.80 ± 0.06; sensitivity, 40%; specificity, 
95%; p < 0.01). The diagnostic accuracies of the other standard parameters TBRmean and TBRmax were 77% and 
75%, respectively. A summary of the results is provided in Supplementary Table 2.

Prediction of the IDH status based on FET PET textural features.  All of the best sixteen textural 
parameters yielded a diagnostic accuracy of 75%. The diagnostic accuracies of the other textural features were 
lower and within the range of 63–73%. A summary of the results is provided in Supplementary Table 2.

Prediction of the IDH status based on combination of parameters.  The largest increase in accuracy 
to predict the IDH genotype was achieved by combining the standard parameter TTP with the textural feature 
SZHGE (accuracy, 84%; sensitivity, 53%; specificity, 95%; p = 0.10). The overall accuracy of the model validation 
was 82% after 5-fold cross-validation and 80% after 10-fold cross-validation. Further details on the model per-
formance and the validation are provided in Table 3. Combinations of TBRmax with TTP, TBRmean with TTP, and 
slope with Contrast_GLCM, respectively, increased the accuracy to 82%. Other combinations did not further 
increase the accuracy. The results are summarized in Supplementary Table 4 and Fig. 3.

Subgroup II – 28 Patients Scanned on the Hybrid PET/MR Scanner
Prediction of the IDH status based on FET PET standard parameters.  The parameters TBRmean 
and slope had the highest accuracy to predict the IDH genotype (TBRmean: accuracy, 79%; AUC, 0.84 ± 0.07; 
sensitivity, 91%; specificity, 71%; p < 0.01; slope: accuracy, 79%; AUC, 0.85 ± 0.07; sensitivity, 73%; specificity, 
82%; p < 0.01). The diagnostic accuracies of the other standard parameters TBRmax and TTP were 75% and 64%, 
respectively. A summary of the results is provided in Supplementary Table 3.

Prediction of the IDH status based on FET PET textural features.  The histogram-based parameter 
kurtosis (KurtosisH) had the highest diagnostic accuracy to predict the IDH genotype (accuracy, 79%; AUC, 
0.78 ± 0.09; sensitivity, 82%; specificity, 76%; p = 0.01). The diagnostic accuracies of the other textural features 
were lower and within a range of 57–75%. A summary of the results is provided in Supplementary Table 3.

Prediction of the IDH status based on combination of parameters.  The largest increase in accuracy 
was achieved by combining TBRmean with the textural feature SZHGE (accuracy, 93%; sensitivity, 91%; specificity, 
94%; p < 0.01). The overall accuracy of the model validation was 82% after 5-fold cross-validation and 86% after 
10-fold cross-validation. Further details on the model performance and the validation are provided in Table 3. 
Thirty-five other parameter combinations resulted in an increased diagnostic accuracy relative to the respective 
single parameter within the range of 82–89%. The results are summarized in Table 3, Supplementary Table 4 and 
Fig. 3.

Patient cohort Parameter 1 Parameter 2
Accuracy no 
validation

Accuracy 
5-fold CV

Accuracy 
10-fold CV p (Bonferroni)

Complete
Slope [SUV/h] SZHGE 0.81 0.79 0.80 <0.01

(n = 84)

Subgroup I
TTP [min] SZHGE 0.84 0.82 0.80 0.10

(n = 56)

Subgroup II
TBRmean SZHGE 0.93 0.82 0.86 <0.01

(n = 28)

Table 3.  Results of best parameter combinations. CV: cross-validation; SZHGE: Short-zone high grey-level 
emphasis; TBR: tumor-to brain ratio; TTP: time to peak.
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Discussion
In the context of radiomics, the aim of this study was to evaluate the diagnostic potential of textural feature anal-
ysis of tumoral FET uptake to predict the IDH genotype of glioma patients. Radiomics is a term that is used to 
describe the application of computational methods to extract a large number of parameters from medical imaging 
data to improve the diagnostic, prognostic and predictive accuracy.

Textural feature analysis is one tool within the concept of radiomics that objectively and quantitatively 
describes particularly structural heterogeneity. The calculated textural features are abstract measures that mathe-
matically describe the intensity variations of the underlying image beyond visual perception. It has been demon-
strated that the combination of different methods of image analysis (i.e., static and dynamic FET PET parameters 
in combination with textural features) yields additional information about tumor biology and thus, allows the 
prediction of the IDH genotype in glioma patients with high accuracy.

Various types of extracranial tumors have been already investigated using textural feature analysis such 
as non-small cell lung cancer18, cervical cancer19, or nasopharyngeal carcinoma20 based on [18F]-2-fluoro-
2-deoxy-D-glucose (FDG) PET images. Furthermore, the usefulness of textural feature analysis of conven-
tional MRI images to predict molecular markers in patients with brain tumors has been demonstrated. For 
example, Korfiatis and colleagues showed the ability of textural features to predict the O6-methylguanine-DNA 

Figure 3.  Increase in diagnostic accuracy to predict IDH genotype after combination of parameters (relative 
difference to accuracy of respective single parameter). GLCM: Grey-level co-occurrence matrix; GLNUr: Grey-
level non-uniformity for run; HGRE: High grey-level run emphasis; LRE: Long-run emphasis; LRHGE: Long-
run high grey-level emphasis; LRLGE: Long-run low grey-level emphasis; LZE: Long-zone emphasis; NGLDM: 
Neighborhood grey-level different matrix; RLNU: Run length non-uniformity; RP: Run percentage; SkewnessH: 
Skewness of histogram; SRE: Short-run emphasis; SRHGE: Short-run high grey-level emphasis; SZE: Short-
zone emphasis; SZHGE: Short-zone high grey-level emphasis; TBR: tumor-to-brain ratio; TTP: time to peak; 
ZLNU: Zone length non-uniformity; ZP: Zone percentage.
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methyltransferase (MGMT) methylation status in GBM patients on T2-weighted MRI with a high accuracy 
(AUC, 0.85)21. Furthermore, the IDH genotype was evaluated using textural feature analysis of MRI data. Zhang 
and co-workers investigated textural feature analysis of preoperative MRI of high-grade glioma patients to pre-
dict the IDH status. They achieved a diagnostic accuracy of 89%22. Similar results were obtained in a recent study 
using deep learning-based radiomics to predict the IDH genotype in WHO grade II gliomas based on MRI with 
a diagnostic accuracy ranging between 85% and 95%23. Another study from Eichinger and colleagues14 generated 
local binary pattern textural features from MR diffusion tensor imaging data of 79 untreated WHO grade II and 
III glioma patients. They achieved a high diagnostic accuracy of 95% in an independent validation set. However, 
the studies mentioned above used highly pre-selected patient cohorts which require a priori knowledge of tumor 
grade from histological samples which contradicts the additional benefit of a non-invasive method for assessment 
of the IDH genotype. On the contrary, our approach was tested and can be applied on a more realistic mixed 
patient population without prior preselection. Additionally, MR-based methods require manual delineation of 
areas of contrast enhancement which limits the applicability of these approaches to tumors with a disrupted 
blood-brain barrier. Since the uptake of FET is independent of the blood-brain barrier integrity, FET PET radi-
omics can also be applied to non-contrast enhancing lesions.

Regarding PET imaging, the usefulness of FET PET textural feature analysis has been shown for glioma 
grading15, diagnosis of pseudoprogression16, and the differentiation between recurrent brain metastasis and 
radiation-induced changes17. To the best of our knowledge, this study is the first to assess the potential of textural 
feature analysis of FET PET for the non-invasive prediction of the IDH genotype in gliomas. Our data thus com-
plement and extend equivalent radiomics-based approaches using MRI data.

We observed in the present study that independent of scanner type, diagnostic accuracies of the dynamic 
parameter slope and the static FET PET parameter TBRmean were comparable (range, 73–80%). In all three 
patient groups, three textural features showed an accuracy of more than 70% (range, 70–79%). Interestingly, 
the combination of standard parameters with the textural feature SZHGE, which represents the distribution of 
short homogenous zones with high levels of intensity, increased the diagnostic accuracy independent of the PET 
scanner used. The diagnostic accuracy could be increased to 81% for the complete patient cohort and to 84% 
for subgroup I (stand-alone PET scanner). The highest diagnostic accuracy of 93% was observed for subgroup 
II (hybrid PET/MR scanner) after combining TBRmean with SZHGE. These results suggest an influence of the 
spatial resolution of the scanner on textural feature analysis. The BrainPET scanner, which is integrated in the 
hybrid PET/MR system, is especially designed for brain imaging and offers PET images with a higher spatial 
resolution (center spatial resolution, approx. 3 mm full-width at half maximum (FWHM)) compared to standard 
stand-alone PET scanners such as the ECAT HR + (center spatial resolution, approx. 6 mm FWHM)24,25. Thus, 
in combination with the smaller reconstructed voxel size, PET images from the BrainPET scanner potentially 
encode more information about tumor heterogeneity. This might be an explanation for the highest diagnostic 
accuracy after combining standard PET parameters with textural features in patients measured with the hybrid 
PET/MR scanner (subgroup II).

As described previously17, in order to get reliable results from textural feature analysis of medical imaging 
data, several things have to be considered carefully.

Image quality is the parameter that has the biggest influence on the results of textural feature analysis. 
Especially in PET, the image quality depends on numerous parameters such as the applied reconstruction algo-
rithm, the method of attenuation correction, the amount of injected radioactivity, the scan duration and the 
spatial resolution of the PET scanner. Comparative studies evaluating the effect of these parameters on textural 
feature analysis are necessary and a standardization is required to compare textural parameters from different 
studies. Until then, the applicability of textural feature analysis of PET images in multicenter studies is limited. 
Furthermore, the interpretation of the results from textural analyses, i.e. the link between the radiomics param-
eter and a physiological or pathophysiological meaning is restricted by the complex mathematical nature of the 
parameters. Only a few textural features such as contrast, can be easily linked to a visual aspect in the image. 
Unfortunately, most textural features, especially higher-dimensional ones can hardly be interpreted by means of 
human perception.

Textural feature analysis may thus prove useful as part of the diagnostic work-up rather than as a stand-alone 
measure. In order to assess the value of textural feature analysis in clinical routine, comparative studies evaluating 
the effect of different PET scanners and parameters on the comparability and reproducibility of textural feature 
analysis warrants further investigation26–28.

The use of hybrid PET/MR is steadily increasing in Neuro-Oncology and is also of great interest for future 
research in radiomics as textural parameters from different modalities allow to explore the benefit of multipar-
ametric radiomic patterns. For example, Kickingereder and colleagues have recently demonstrated that a com-
bination of three different MR contrasts leads to a radiomic signature that allows a non-invasive prediction and 
stratification of PFS and OS in 181 patients with IDH wt glioblastoma29. Additionally, textural feature analysis has 
a great potential also for treatment monitoring30,31, i.e., changes of textural parameters during treatment might be 
predictive to discriminate responders from non-responders at an early stage of therapy.

One limitation of our current study is its retrospective design. The robustness of the textural parameters 
of FET PET data for predicting IDH genotype needs to be confirmed in a larger prospective study. Also, the 
number of patients is relatively low and the number of parameters is high, which might potentially lead to over-
fitting of the data and an invalid model generation. To overcome this issue and generate a comprehensible and 
interpretable model, simple logistic regression was applied and the maximum number of parameters for model 
generation was restricted to two. Furthermore, 5-fold and 10-fold cross-validation was performed for model 
validation and Bonferroni post-hoc correction was applied. The different PET scanners used are another limita-
tion. However, the utilized dataset represents a realistic clinical situation, in which a new method should prove 
its diagnostic value. To account for this, the patient cohorts were separately analyzed and the data from the two 



www.nature.com/scientificreports/

7Scientific REPorTS |  (2018) 8:13328  | DOI:10.1038/s41598-018-31806-7

different PET scanners were used to investigate the influence of the image quality on the reproducibility of the 
standard and the textural parameters. Despite differences, all in all comparable results were obtained. Finally, 
from a practical viewpoint the post-processing of the image data is more complex than the evaluation of TBRs, 
which are commonly used in clinical routine. However, the post-processing takes less than thirty minutes and 
most of the steps could be automatized in order to speed-up the analyses.

In summary, the current study demonstrates that textural features in combination with standard FET PET 
parameters allow to non-invasively predict the IDH genotype of glioma patients with a high diagnostic accuracy.

Patients and Methods
Patients.  From August 2007 to December 2016, 907 patients with suspected brain lesion were investigated 
using FET PET in the Institute of Neuroscience and Medicine, Forschungszentrum Juelich, Germany. Of those, 84 
patients were included in this retrospective analysis (50 males, 34 females; mean age, 54 ± 14 years; range, 22–76 
years) according to the following inclusion criteria: (i) newly diagnosed glioma, (ii) untreated prior to FET PET 
imaging, (iii) neuropathological diagnosis based on the WHO classification of 20161 (patients with tumor clas-
sifications initially based on the WHO classification of 2007 were re-evaluated and re-classified according to the 
updated WHO classification of 2016), (iv) known IDH mutation status, (v) pathological FET uptake (TBR > 1.6), 
(vi) volume of pathological FET uptake >100 voxels32.

The patients’ neuropathological diagnoses after tumor resection (46% of patients) or biopsy (54% of patients) 
classified according to the WHO 2016 classification were 46 IDH wt GBM of the WHO grade IV; 5 IDH mut 
GBM of the WHO grade IV; 11 IDH wt anaplastic astrocytoma (AA) of the WHO grade III; 14 IDH mut AA 
of the WHO grade III; one IDH mut anaplastic oligodendroglioma (ODG) of the WHO grade III; one IDH wt 
astrocytoma of the WHO grade II; 3 IDH mut astrocytoma of the WHO grade II; and 3 IDH mut ODG of the 
WHO grade II. Further details of the patient cohort are presented in Table 1 and Fig. 2. All patients had provided 
written informed consent before each FET PET investigation. The ethics committee of the University Hospital 
RWTH Aachen approved the evaluation of retrospectively collected patient data. All methods were performed in 
accordance with the relevant guidelines and regulations.

FET PET Imaging.  The amino acid FET was produced and applied as described previously33,34. For each 
patient, a dynamic PET scan from 0 to 50 min post-injection (p.i.) of 3 MBq of FET per kg of body weight prior 
to histopathological confirmation was acquired. Fifty-six patients (31 IDH wt GBM (WHO grade IV), 3 IDH mut 
GBM (WHO grade IV), 10 IDH wt AA (WHO grade III), 7 IDH mut AA (WHO grade III), 2 IDH mut astrocy-
toma (WHO grade II), 3 IDH mut ODG (WHO grade II)) were measured on a stand-alone PET scanner (ECAT 
EXACT HR+, Siemens Medical Systems, Inc.) in 3D mode (32 rings; axial field of view, 15.5 cm; center spatial 
resolution, approx. 6 mm FWHM). The reconstructed dynamic dataset consisted of 16 time frames (5 × 1 min; 
5 × 3 min; 6 × 5 min). A 10 min transmission scan using three rotating line sources (68Ge/68Ga) was used for atten-
uation correction. Before iterative OSEM reconstruction (16 subsets, 6 iterations), data were corrected for dead 
time, random and scattered coincidences.

Twenty-eight patients (15 IDH wt GBM (WHO grade IV), 2 IDH mut GBM (WHO grade IV), 1 IDH wt AA 
(WHO grade III), 7 IDH mut AA (WHO grade III), 1 IDH mut ODG (WHO grade III), 1 IDH wt astrocytoma 
(WHO grade II), 1 IDH mut astrocytoma (WHO grade II)), were scanned on a high-resolution 3 T hybrid PET/
MR scanner (BrainPET, Siemens Medical Systems, Inc., 72 rings; axial field of view, 19.2 cm; center spatial reso-
lution, approx. 3 mm FWHM). Image data were corrected for random and scatter coincidences, as well as dead 
time prior to OPOSEM reconstruction provided by the manufacturer (2 subsets, 32 iterations). The reconstructed 
dynamic data set consisted of 16 time frames (5 × 1 min; 5 × 3 min; 6 × 5 min). Since the hybrid PET/MR scanner 
does not provide a transmission source, attenuation correction was performed by a template-based approach 
using MRI35.

IDH genotyping.  After obtaining tumor tissue via open neurosurgery or stereotactic biopsy, all lesions were 
histologically classified according to the WHO classification 2016 of tumors of the central nervous system. For 
IDH mutation status, presence of an IDH1R132H protein expression was evaluated by immunohistochemistry. 
If immunostaining was negative, IDH was directly sequenced. The 1p/19q co-deletion status was analyzed by 
fluorescence in situ hybridization.

Data Analysis.  Summed PET images from 20–40 min p.i. were used for data analysis. Prior to further analy-
ses, all images were motion-corrected using the PMOD software (Version 3.5.5, PMOD Technologies Ltd.). The 
FET uptake was normalized using the standardized uptake value (SUV) by dividing the radioactivity (kBq/mL) 
in the tissue by the radioactivity injected per gram of body weight. A spherical volume-of-interest (VOI) of con-
stant size (diameter, 30 mm; volume, 14.2 mL) was placed in normal-appearing brain tissue including both grey 
and white matter contralateral to the lesion as reference36. The biological tumor volume was determined using 
a three-dimensional auto-contouring process using a TBR of 1.6 or more37. TBRmean was calculated by dividing 
the mean SUV of the tumor VOI by the mean SUV of normal brain tissue. TBRmax was calculated by dividing the 
maximum SUV of the tumor VOI by the mean SUV of normal brain tissue.

Furthermore, time-activity curves were generated by applying the tumor VOI to the full dynamic data set. 
As described previously38, the dynamic parameters TTP and slope were determined. TBRmean, TBRmax, TTP, and 
slope are considered as standard FET PET parameters throughout the manuscript.

Tumor masks were created for textural feature analysis by setting all voxels outside the tumor VOI in the 
summed image from 20–40 min to zero while leaving the original SUV values inside the VOI unchanged. The 
ECAT7 images were converted to NIFTI file format for further processing using PMOD (Version 3.5.5, PMOD 
Technologies Ltd.). The software LIFEx (Version 2.2, lifexsoft.org)39 was used for calculation of 33 textural 
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parameters that differ in the way they are mathematically calculated. A detailed description of each textural 
parameter is available in the technical appendix of the LIFEx software32.

Finally, in order to further increase diagnostic accuracy, the standard parameters TBRmean, TBRmax, TTP, 
and slope were combined with each other and with the textural parameters using linear logistic regression. 
Importantly, a maximum number of two parameters was accepted for model generation in order to limit model 
complexity and avoid overfitting of the data. The models were validated using cross-validation (MATLAB, 
R2017b. Mathworks, Inc., MA, USA). Two commonly used cross-validation methods (5-fold and 10-fold 
cross-validation) were applied to the best model of each patient cohort.

Due to the different spatial resolution of the two PET scanners used, the applied data correction methods and 
reconstruction algorithms that might directly influence the results of textural feature analyses, imaging data of 
each scanner type were analyzed separately. However, to evaluate robustness of parameters with respect to the 
different PET scanners, the complete patient cohort was also analyzed.

Statistical Analysis.  Quantitative variables are expressed as mean and standard deviation. For comparison 
of two different groups, the Student t-test for independent samples was used. In case of variables that were not 
distributed normally, the Mann-Whitney rank sum test was used. The diagnostic accuracy for IDH genotype 
prediction by FET PET standard parameters and textural features was evaluated by analyses of receiver-operating 
characteristic (ROC) curves using neuropathological results of IDH status as reference. Decision cut-off was 
considered optimal, when the diagnostic accuracy reached its maximum. Furthermore, the area under the ROC 
curve (AUC), its corresponding standard error, the 95% confidence interval, and the level of significance were 
evaluated to assess the diagnostic quality. As mentioned above, the standard parameters TBRmean, TBRmax, TTP, 
and slope were combined with each other and with the textural parameters using linear logistic regression in 
order to further increase the accuracy of predicting the IDH genotype. The diagnostic performance of the param-
eter combinations was evaluated by Fisher´s exact test for 2 × 2 contingency tables. A p-value of <0.05 was con-
sidered as significant. The significance level was adjusted for multiple comparisons using the Bonferroni post-hoc 
correction. Statistical analyses were performed using Microsoft Excel (Excel:Mac 2011, Version 14.6, Microsoft 
Corp.), Mathematica (Version 10.3, Wolfram Research) and IBM SPSS Statistics (IBM Corp. Released 2012, 
Version 21.0, IBM Corp.).

References
	 1.	 Louis, D. N. et al. The2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta 

Neuropathol. 131, 1–18 (2016).
	 2.	 Van Den Bent, M. J. et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic 

oligodendroglioma: Long-term follow-up of EORTC brain tumor group study 26951. J. Clin. Oncol. 31, 344–350 (2013).
	 3.	 Cairncross, J. G. et al. Benefit from procarbazine, lomustine and vincristine in oligodendroglial tumors is associated with mutation 

of IDH. J. Clin. Oncol. 32, 783–790 (2014).
	 4.	 Houillier, C. et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 

75, 1560–6 (2010).
	 5.	 Olar, A. et al. IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II–III diffuse gliomas. Acta 

Neuropathol. 129, 585–596 (2015).
	 6.	 Hartmann, C. et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation 

and age: A study of 1,010 diffuse gliomas. Acta Neuropathol. 118, 469–474 (2009).
	 7.	 Hartmann, C. et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated 

glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: Implications for classification 
of gliomas. Acta Neuropathol. 120, 707–718 (2010).

	 8.	 The Cancer Genome Atlas Research Network. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N. 
Engl. J. Med. 372, 2481–2498 (2015).

	 9.	 Weller, M. et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic 
and oligodendroglial gliomas. Lancet Oncol. 18, e315–e329 (2017).

	10.	 Cohen, A. L., Holmen, S. L. & Colman, H. IDH1 and IDH2 Mutations in Gliomas. Curr. Neurol. Neurosci. Rep. 13, 345 (2013).
	11.	 Choi, C. et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat. Med. 

18, 624–9 (2012).
	12.	 Langen, K.-J., Galldiks, N., Hattingen, E. & Shah, N. J. Advances in neuro-oncology imaging. Nat. Rev. Neurol. 13, 279–289 (2017).
	13.	 Yu, J. et al. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. Eur. Radiol. 27, 

3509–3522 (2017).
	14.	 Eichinger, P. et al. Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas. Sci. Rep. 7, 

1–9 (2017).
	15.	 Pyka, T. et al. Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-

grade gliomas. Eur. J. Nucl. Med. Mol. Imaging 43, 133–141 (2016).
	16.	 Kebir, S. et al. Unsupervised consensus cluster analysis of [18F] -fluoroethyl- L-tyrosine positron emission tomography identified 

textural features for the diagnosis of pseudoprogression in high-grade glioma. Oncotarget 8, 8294–8304 (2017).
	17.	 Lohmann, P. et al. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard 

parameters may increase 18F-FET PET accuracy without dynamic scans. Eur. Radiol. 27, 2916–2927 (2017).
	18.	 Cook, G. J. R. et al. Are Pretreatment 18F-FDG PET Tumor Textural Features in Non-Small Cell Lung Cancer Associated with 

Response and Survival After Chemoradiotherapy? J. Nucl. Med. 54, 19–26 (2012).
	19.	 Yang, F., Thomas, M. A., Dehdashti, F. & Grigsby, P. W. Temporal analysis of intratumoral metabolic heterogeneity characterized by 

textural features in cervical cancer. Eur. J. Nucl. Med. Mol. Imaging 40, 716–727 (2013).
	20.	 Huang, B., Chan, T., Kwong, D. L. W., Chan, W. K. S. & Khong, P. L. Nasopharyngeal carcinoma: Investigation of intratumoral 

heterogeneity with FDG PET/CT. Am. J. Roentgenol. 199, 169–174 (2012).
	21.	 Korfiatis, P. et al. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med. Phys. 43, 

2835–2844 (2016).
	22.	 Zhang, B. et al. Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro. Oncol. 19, 

109–117 (2017).
	23.	 Li, Z., Wang, Y., Yu, J., Guo, Y. & Cao, W. Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for 

low grade glioma. Sci. Rep. 7, 5467 (2017).
	24.	 Herzog, H. et al. High resolution BrainPET combined with simultaneous MRI. Nuklearmedizin 50, 74–82 (2011).



www.nature.com/scientificreports/

9Scientific REPorTS |  (2018) 8:13328  | DOI:10.1038/s41598-018-31806-7

	25.	 Herzog, H. et al. NEMA NU2-2001 guided performance evaluation of four Siemens ECAT PET scanners. IEEE Trans. Nucl. Sci. 51, 
2662–2669 (2004).

	26.	 Filss, C. P. et al. O-(2-[18F]fluoroethyl)-l-tyrosine PET in gliomas: influence of data processing in different centres. EJNMMI Res. 7, 
64 (2017).

	27.	 Unterrainer, M. et al. Towards standardization of 18F-FET PET imaging: do we need a consistent method of background activity 
assessment? EJNMMI Res. 7, 48 (2017).

	28.	 Bailly, C. et al. Revisiting the robustness of PET-based textural features in the context of multi-centric trials. PLoS One 11, 1–16 
(2016).

	29.	 Kickingereder, P. et al. Radiomic subtyping improves disease stratification beyond key molecular, clinical and standard imaging 
characteristics in patients with glioblastoma. Neuro. Oncol. 44 (2017).

	30.	 Wong, A. J., Kanwar, A., Mohamed, A. S. & Fuller, C. D. Radiomics in head and neck cancer: from exploration to application. Transl. 
Cancer Res. 5, 371–382 (2016).

	31.	 Antunes, J. et al. Radiomics analysis on FLT-PET/MRI for characterization of early treatment response in renal cell carcinoma: A 
proof-of-concept study. Transl. Oncol. 9, 155–162 (2016).

	32.	 Orlhac, F., Nioche, C. & Buvat, I. LIFEx - Technical Appendix. Available at: http://lifexsoft.org/images/phocagallery/documentation/
ProtocolTexture/TechnicalAppendix/TextureProtocolTechnicalAppendix.pdf. (Accessed: 18th August 2017)

	33.	 Hamacher, K. & Coenen, H. H. Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl. 
Radiat. Isot. 57, 853–856 (2002).

	34.	 Langen, K.-J. et al. [German guidelines for brain tumor imaging by PET and SPECT using labelled amino acids]. Nuklearmedizin. 
50, 167–173 (2011).

	35.	 Kops, E. R. & Herzog, H. Template based attenuation correction for PET in MR-PET scanners. IEEE Nucl. Sci. Symp. Conf. Rec. 
3786–3789 (2008).

	36.	 Lohmann, P. et al. Dual-time-point O-(2-[18F]fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas. Eur. Radiol. 25, 
3017–3024 (2015).

	37.	 Pauleit, D. et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral 
gliomas. Brain 128, 678–687 (2005).

	38.	 Ceccon, G. et al. Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis 
recurrence from radiation injury after radiotherapy. Neuro. Oncol. 19, 281–288 (2017).

	39.	 Nioche, C. et al. A freeware for tumor heterogeneity characterization in PET, SPECT, CT, MRI and US to accelerate advances in 
radiomics. J. Nucl. Med. 58, 1316–1316 (2017).

Acknowledgements
The authors thank Suzanne Schaden, Elisabeth Theelen, Trude Plum, Natalie Judov, Silke Frensch, Kornelia 
Frey, and Lutz Tellmann for assistance in the patient studies; Johannes Ermert, Silke Grafmüller, Erika Wabbals 
and Sascha Rehbein for radiosynthesis of FET. This work was partly supported by the Wilhelm-Sander Stiftung, 
Germany (No. 2016.069.1 to N.G.).

Author Contributions
P.L.: Data analysis, interpretation of data, writing of manuscript drafts, revising and approving final content of 
manuscript C.L. Data analysis, interpretation of data, revising manuscript, approving final content of manuscript 
E.K.B., J.S., G.S., T.B., V.D., C.P.F., M.I.R. and B.N. Data acquisition, revising manuscript, approving final content 
of manuscript M.K., S.V., C.S. Interpretation of data, revising manuscript, approving final content of manuscript 
N.J.S. Study design, revising manuscript, approving final content of manuscript G.R.F., K-J.L., N.G. Study design, 
interpretation of data, revising manuscript, approving final content of manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-31806-7.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-31806-7
http://creativecommons.org/licenses/by/4.0/

	Predicting IDH genotype in gliomas using FET PET radiomics

	Results

	Complete Patient Cohort (84 Patients)

	Prediction of the IDH status based on FET PET standard parameters. 
	Prediction of the IDH status based on FET PET textural features. 
	Prediction of the IDH status based on combination of parameters. 

	Subgroup I – 56 Patients Examined on the Stand-Alone PET Scanner

	Prediction of the IDH status based on FET PET standard parameters. 
	Prediction of the IDH status based on FET PET textural features. 
	Prediction of the IDH status based on combination of parameters. 

	Subgroup II – 28 Patients Scanned on the Hybrid PET/MR Scanner

	Prediction of the IDH status based on FET PET standard parameters. 
	Prediction of the IDH status based on FET PET textural features. 
	Prediction of the IDH status based on combination of parameters. 

	Discussion

	Patients and Methods

	Patients. 
	FET PET Imaging. 
	IDH genotyping. 
	Data Analysis. 
	Statistical Analysis. 

	Acknowledgements

	﻿Figure 1 What are textural features? In this example, the basic processing steps and the principle of textural feature analysis is illustrated.
	Figure 2 Patient cohort and distribution of IDH genotypes and WHO grades.
	Figure 3 Increase in diagnostic accuracy to predict IDH genotype after combination of parameters (relative difference to accuracy of respective single parameter).
	Table 1 Demographic and clinical data of all patients.
	Table 2 Summary of conventional FET PET parameters.
	Table 3 Results of best parameter combinations.




