Home > Publications database > Tailoring the switching performance of resistive switching SrTiO3 devices by SrO interface engineering > print |
001 | 851754 | ||
005 | 20210129235012.0 | ||
024 | 7 | _ | |a 10.1016/j.ssi.2018.09.003 |2 doi |
024 | 7 | _ | |a 0167-2738 |2 ISSN |
024 | 7 | _ | |a 1872-7689 |2 ISSN |
024 | 7 | _ | |a WOS:000449131900033 |2 WOS |
037 | _ | _ | |a FZJ-2018-05279 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Hensling, F. V. E. |0 P:(DE-Juel1)165926 |b 0 |e Corresponding author |
245 | _ | _ | |a Tailoring the switching performance of resistive switching SrTiO3 devices by SrO interface engineering |
260 | _ | _ | |a Amsterdam [u.a.] |c 2018 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1536752721_5579 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Redox-based resistive switching is one of the most-promising concepts in the focus of research to meet the ever-growing demand for faster and smaller non-volatile memory devices. In this work we present detailed studies of the impact of cation stoichiometry and surface segregation effects on the performance of the valence change memory model material SrTiO3. In order to clarify if the enhanced switching performance of Sr-rich SrTiO3 devices can be attributed to SrO segregation or to the formation of Sr-rich extended defects, we artificially engineered the formation of SrO islands by depositing additional SrO on top of stoichiometric SrTiO3. We thereby unravel that the enhanced switching performance is solely accounted for by the formation of SrO islands and not influenced by extended defects. Consequently following our findings, we design devices with a further improved retention by tailoring the amount of SrO on the surface. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Heisig, T. |0 P:(DE-Juel1)169605 |b 1 |
700 | 1 | _ | |a Raab, N. |0 P:(DE-Juel1)157925 |b 2 |
700 | 1 | _ | |a Bäumer, Christoph |0 P:(DE-Juel1)159254 |b 3 |
700 | 1 | _ | |a Dittmann, R. |0 P:(DE-Juel1)130620 |b 4 |
773 | _ | _ | |a 10.1016/j.ssi.2018.09.003 |g Vol. 325, p. 247 - 250 |0 PERI:(DE-600)1500750-9 |p 247 - 250 |t Solid state ionics |v 325 |y 2018 |x 0167-2738 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/851754/files/1-s2.0-S0167273818305812-main.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/851754/files/1-s2.0-S0167273818305812-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:851754 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165926 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)169605 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)159254 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130620 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SOLID STATE IONICS : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|