000851758 001__ 851758
000851758 005__ 20210129235013.0
000851758 037__ $$aFZJ-2018-05282
000851758 1001_ $$0P:(DE-Juel1)159531$$aVorderwülbecke, Sophia$$b0$$eCorresponding author
000851758 245__ $$aNumerical Solutions of Fractional Nonlinear Advection-Reaction-Diffusion Equations$$f - 2018-08-28
000851758 260__ $$c2018
000851758 300__ $$av, 60 p.
000851758 3367_ $$2DataCite$$aOutput Types/Supervised Student Publication
000851758 3367_ $$02$$2EndNote$$aThesis
000851758 3367_ $$2BibTeX$$aMASTERSTHESIS
000851758 3367_ $$2DRIVER$$amasterThesis
000851758 3367_ $$0PUB:(DE-HGF)19$$2PUB:(DE-HGF)$$aMaster Thesis$$bmaster$$mmaster$$s1542262843_15147
000851758 3367_ $$2ORCID$$aSUPERVISED_STUDENT_PUBLICATION
000851758 502__ $$aMasterarbeit, The University of Wisconsin-Milwaukee, 2018$$bMasterarbeit$$cThe University of Wisconsin-Milwaukee$$d2018
000851758 520__ $$aIn this thesis nonlinear differential equations containing advection, reaction and diffusionterms are solved numerically, where the diffusion term is modelled by a fractional derivative.One of the methods employed is a finite difference method for temporal as well as spatialdiscretization. Furthermore, exponential time differencing schemes under consideration ofdifferent matrix exponential approximations are exploited for the temporal discretization,whereas finite differences are used for the spatial approximation. The schemes are applied tothe homogeneous Burgers, Burgers-Fisher and Burgers-Huxley equation and compared withrespect to convergence and efficiency in a numerical investigation.
000851758 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000851758 8564_ $$uhttps://juser.fz-juelich.de/record/851758/files/Vorderwuelbecke-thesis-1.pdf$$yRestricted
000851758 8564_ $$uhttps://juser.fz-juelich.de/record/851758/files/Vorderwuelbecke-thesis-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851758 909CO $$ooai:juser.fz-juelich.de:851758$$pVDB
000851758 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159531$$aForschungszentrum Jülich$$b0$$kFZJ
000851758 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000851758 9141_ $$y2018
000851758 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000851758 980__ $$amaster
000851758 980__ $$aVDB
000851758 980__ $$aI:(DE-Juel1)JSC-20090406
000851758 980__ $$aUNRESTRICTED