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A precision measurement of the nitrogen flux with rigidity (momentum per unit charge) from 2.2 GV to

3.3 TV based on 2.2 × 106 events is presented. The detailed rigidity dependence of the nitrogen flux

spectral index is presented for the first time. The spectral index rapidly hardens at high rigidities

and becomes identical to the spectral indices of primary He, C, and O cosmic rays above ∼700 GV.

We observed that the nitrogen flux ΦN can be presented as the sum of its primary component ΦP
N and

secondary component ΦS
N, ΦN ¼ Φ

P
N þΦ

S
N, and we found ΦN is well described by the weighted sum of

the oxygen flux ΦO (primary cosmic rays) and the boron flux ΦB (secondary cosmic rays), with Φ
P
N ¼

ð0.090� 0.002Þ ×ΦO and Φ
S
N ¼ ð0.62� 0.02Þ ×ΦB over the entire rigidity range. This corresponds to a

change of the contribution of the secondary cosmic ray component in the nitrogen flux from 70% at a few

GV to < 30% above 1 TV.

DOI: 10.1103/PhysRevLett.121.051103

Nitrogen nuclei in cosmic rays are thought to be
produced both in astrophysical sources, mostly via the
CNO cycle [1,2], and by the collisions of heavier nuclei

with the interstellar medium [3]. Therefore the nitrogen

flux ΦN is expected to contain both primary Φ
P
N and

secondary Φ
S
N components. Precise knowledge of the

primary component of cosmic nitrogen provides impor-
tant insights into the details of nitrogen production in
astrophysical sources, while precise knowledge of the
secondary component of the cosmic nitrogen provides
insights into the details of propagation processes of
cosmic rays in the Galaxy. Over the last 50 years, few
experiments have measured the nitrogen flux [4–7].

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.
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Typically, these measurements have errors larger than
40%–50% above 100 GV.
Precision measurements of the primary He, C, and O

cosmic ray fluxes and of the secondary Li, Be, and B
cosmic ray fluxes by the Alpha Magnetic Spectrometer
(AMS) have been reported [8,9] with typical errors of
2%–4% at 100 GV.
To determine the primary and secondary components in

the nitrogen flux, we have chosen the rigidity dependence
of the oxygen flux as characteristic of primary fluxes and
the rigidity dependence of the boron flux as characteristic
of secondary fluxes. The secondary component of the
oxygen flux is the lowest (a few percent [10,11]) among
He, C, and O. The boron flux has no primary contribution
and is mostly produced from the interactions of primary
cosmic rays C and O with interstellar matter.
In this Letter we report the precision measurement of the

nitrogen flux in cosmic rays in the rigidity range from
2.2 GV to 3.3 TV based on data collected by the AMS
during the first five years (May 19, 2011 to May 26, 2016)
of operation aboard the International Space Station (ISS).
The total flux error is 4% at 100 GV.
Detector.—The layout and description of the AMS

detector are presented in Ref. [12]. The key elements used
in this measurement are the permanent magnet [13], the
silicon tracker [14], and the four planes of time of flight
(TOF) scintillation counters [15]. Further information on
the layout and the performance of the silicon tracker and
the TOF is included in Refs. [16,17]. AMS also contains a
transition radiation detector (TRD), a ring imaging
Čerenkov detector, an electromagnetic calorimeter, and
an array of 16 anticoincidence counters.
Nitrogen nuclei traversing AMS were triggered as

described in Ref. [18]. The trigger efficiency has been
measured to be > 98% over the entire rigidity range.
Monte Carlo (MC) simulated events were produced

using a dedicated program developed by the collaboration
based on the GEANT-4.10.1 package [19]. The program
simulates electromagnetic and hadronic interactions of
particles in the material of AMS and generates detector
responses. The Glauber-Gribov model [19], tuned to
reproduce the AMS helium data, see supplemental
figures SM 1(a),1(b) in Ref. [18], was used for the
description of the nuclei inelastic cross sections.
Event selection.—In the first five years AMS has collected

8.5 × 1010 cosmic ray events. The collection time used in
this analysis includes only those seconds during which the
detector was in normal operating conditions and, in addition,
AMS was pointing within 40° of the local zenith and the ISS
was outside of the South Atlantic Anomaly. Because of the
geomagnetic field, this collection time increases with rigidity,

becoming constant at 1.23 × 108 seconds above 30 GV.
Nitrogen events are required to be downward-going

and to have a reconstructed track in the inner tracker
which passes through L1. In the highest rigidity region,

R ≥ 1.3 TV, the track is also required to pass through L9.

Track fitting quality criteria such as a χ2=d:o:f: < 10 in the
bending coordinate are applied, similar to Refs. [18,20,21].
The measured rigidity is required to be greater than a

factor of 1.2 times the maximum geomagnetic cutoff within
the AMS field of view. The cutoff was calculated by
backtracing [22] particles from the top of AMS out to 50
Earth’s radii using the most recent IGRF model [23].
Charge measurements on L1, the upper TOF, the inner

tracker, the lower TOF, and, for R > 1.3TV, L9 are all
required to be compatible with charge Z ¼ 7 as shown in
Fig. 1 of the Supplemental Material [16] for the inner
tracker and in Fig. 2 of the Supplemental Material [16]
for the upper TOF for different rigidity ranges. With this
selection, the charge confusion from noninteracting nuclei
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FIG. 1. (a) The AMS nitrogen flux ΦN [16] multiplied by R̃2.7

with total errors as a function of rigidity. (b) The dependence of
the nitrogen spectral index on rigidity together with the rigidity
dependence of the spectral indices of primary He, C, and O
cosmic rays and secondary Li, Be, and B cosmic rays. For clarity,
the horizontal positions of the Li and B data points and He and O
data points are displaced with respect to the Be and C data points,
respectively. The shaded regions are to guide the eye. As seen,
the nitrogen spectral index is situated between the primary and
secondary cosmic ray spectral indices, hardens rapidly with
rigidity above ∼100 GV and becomes identical to the spectral
indices of the primary cosmic rays above ∼700 GV.
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is negligible (< 0.1%) over the whole rigidity range. This
selection yields overall purities of 90%–95% depending on
rigidity for nitrogen nuclei. The impurities have two
sources. First, a residual background to nitrogen events
results from the interactions of heavy nuclei such as O, F,
and Ne in the material between L1 and L2 (the TRD and
upper TOF). It has been evaluated by fitting the charge
distribution from L1 of events selected as nitrogen by the
inner tracker with charge distribution templates of N, O, F,
and Ne. Then cuts are applied on the L1 charge as shown in
Fig. 3 the Supplemental Material [16]. The charge distri-
bution templates are obtained using L2. These templates
contain only noninteracting events by requiring that L1 and
L3–L8 measure the same charge value. This residual
background is < 5% over the entire rigidity range.
Second, the background from O, F, and Ne interacting
in materials above L1 (thin support structures made of
carbon fiber and aluminum honeycomb) has been estimated
from simulation using MC samples generated according to
AMS flux measurements [8,16,24]. This background is
< 3% below 200 GVand increases up to 6% at 3.3 TV. The
simulation of nuclear interactions has been validated using
data as shown in Fig. 4 of the Supplemental Material [16].
The overall uncertainty due to the total background

subtraction is < 1.5% over the entire rigidity range. After

background subtraction, we obtain 2.2 × 106 nitrogen
nuclei.
Data analysis.—The isotropic flux Φi in the ith rigidity

bin ðRi; Ri þ ΔRiÞ is given by

Φi ¼
Ni

AiϵiTiΔRi

; ð1Þ

where Ni is the number of events corrected for bin-to-bin
migration, Ai is the effective acceptance, ϵi is the trigger

efficiency, and Ti is the collection time. In this Letter the
nitrogen flux was measured in 66 bins from 2.2 GV to
3.3 TV with bin widths chosen according to the rigidity
resolution. Except for the first bin, the bin widths are
identical with the bins used in the AMS publication on
secondary cosmic rays [9].
The bin-to-bin migration of events was corrected using

the unfolding procedure described in Ref. [20]. These
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seen from (b) and (c), the contribution of the secondary component

in the nitrogen flux decreases, and the contribution of the primary
component correspondingly increases, with rigidity.
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corrections, ðNi − ℵiÞ=ℵi, where ℵi is the number of
observed events in bin i, are þ15% at 3 GV, þ7% at
5 GV, −5% at 200 GV, and −6% at 3.3 TV.
Extensive studies were made of the systematic errors.

These errors include the uncertainties in the background
estimations discussed above, the trigger efficiency, the
geomagnetic cutoff factor, the acceptance calculation, the
rigidity resolution function, and the absolute rigidity scale.
The systematic error on the flux associated with the trigger
efficiency measurement is < 0.7% over the entire rigidity
range. The geomagnetic cutoff factor was varied from 1.0
to 1.4, resulting in a negligible systematic uncertainty
(< 0.1%) in the rigidity range below 30 GV.
The effective acceptances Ai were calculated using MC

simulation and corrected for small differences between the
data and simulated events related to (a) event reconstruction
and selection, namely, in the efficiency of velocity deter-
mination, track finding, charge determination, and tracker
quality cuts and (b) the details of inelastic interactions of
nitrogen nuclei in the AMS materials. The total corrections
to the effective acceptance from the differences between
the data and the MC simulation were found to be < 3%,
up to 500 GVand < 5% at 3.3 TV. The systematic error on
the flux associated with the reconstruction and selection is
< 1% over the entire rigidity range. The material traversed
by nuclei between L1 and L9 is composed primarily of
carbon and aluminum [18]. The systematic error on the
nitrogen flux due to uncertainties of inelastic cross sections

for Nþ C and Nþ O was evaluated in a similar way as in
Ref. [8] and discussed in detail in the data analysis section
of the Supplemental Material of Ref. [16]. It was found to
be < 3% up to 100 GV and 4% at 3 TV.
The rigidity resolution function Δð1=RÞ for nitrogen has

a pronounced Gaussian core characterized by width σ and
non-Gaussian tails more than 2.5σ away from the center
[18]. The resolution function has been verified with the
procedures described in detail in Ref. [21]. As an example,
Fig. 6 of the Supplemental Material of Ref. [16] shows that
the measured tracker bending coordinate resolution of
5.5 μm is in good agreement with the simulation. This
yields the MDR of 3.5 TV with 5% uncertainty and
provides the uncertainties of 10% on the amplitudes of
the non-Gaussian tails. The systematic error on the flux due
to the rigidity resolution function was obtained by repeat-
ing the unfolding procedure while varying the width of the
Gaussian core of the resolution function by 5% and by
independently varying the amplitudes of the non-Gaussian
tails by 10%. The resulting systematic error on the flux is
less than 1% below 150 GV and 3% at 3.3 TV.
There are two contributions to the systematic uncertainty

on the rigidity scale discussed in detail in Refs. [8,20]. The
first is due to residual tracker misalignment. The second
contribution arises from the magnetic field map measure-
ment and magnetic field temperature corrections. The error
on the flux due to this uncertainty is < 0.6% up to 100 GV
and 5% in the last bin, 1.3–3.3 TV.
Much effort has been spent in understanding the sys-

tematic errors [18,20,21]. As an example, Fig. 7 of the
Supplemental Material [16] shows the ratio of two mea-
surements of the nitrogen flux from 2.2 GV to 1.3 TV, one
performed using events passing through L1 to L8 and the
other using events passing through L1 to L9. The good
agreement between the measurements verifies the system-
atic errors on unfolding, due to the difference in the
resolution functions, and the systematic errors on accep-
tance, due to the difference in geometric factor and the
amount of material traversed.
Most importantly, several independent analyses were

performed on the same data sample by different study groups.
The results of those analyses are consistent with this Letter.
Results.—The measured nitrogen flux including statis-

tical and systematic errors is reported in Table I of the
Supplemental Material [16] as a function of the rigidity at
the top of the AMS detector. Figure 1(a) shows the nitrogen
flux as a function of rigidity with the total errors, the
quadratic sum of statistical and systematic errors. In this
and the subsequent figures, the points are placed along the

abscissa at R̃ calculated for a flux ∝ R−2.7 [25].
To examine the rigidity dependence of the flux, the

detailed variation of the flux spectral index with rigidity
was calculated in a model independent way from

γ ¼ d½logðΦÞ�=d½logðRÞ�; ð2Þ
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FIG. 4. Comparison of the AMS measurements of the primary
cosmic ray fluxes [8] and the secondary cosmic rays fluxes [9]
with the nitrogen flux [16] multiplied by R̃2.7 with their total
errors as functions of rigidity above 30 GV. For display purposes
only, the C, O, Li, Be, B, and N fluxes were rescaled as indicated.
For clarity, the horizontal positions of the He, O, Li, and B data
points above 400 GVare displaced. As seen, the three secondary
fluxes have identical rigidity dependence above 30 GV as do the
three primary fluxes above 60 GV, but they are different from
each other. The rigidity dependence of the nitrogen flux is
distinctly different from the dependence of both the primary
fluxes and the dependence of the secondary fluxes.
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over nonoverlapping rigidity intervals above 8.48 GV
with a variable width to have sufficient sensitivity to
determine γ. The results are presented in Fig. 1(b) together
with the spectral indices of primary cosmic rays He, C, and
O [8] and of secondary cosmic rays Li, Be, and B [9]. As
seen, the nitrogen spectral index is situated between the
primary and secondary cosmic ray spectral indices, hardens
rapidly with rigidity above ∼100 GV and becomes iden-
tical to the spectral indices of He, C, and O above
∼700 GV. Figure 2 shows the AMS nitrogen flux as a
function of kinetic energy per nucleon EK together with the
results of earlier measurements [4–7] and the prediction of
a cosmic ray propagation model, GALPROP [10], which is
based on data available before AMS. Data from earlier
measurements have been extracted using Ref. [26]. For the

AMS measurement EK ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z2R̃2 þM2

p

−MÞ=A where
Z,M, and A are the nitrogen charge, mass, and atomic mass
number, respectively. For comparison with other measure-
ments the atomic mass number of 14.5 was used.
To examine the difference in the rigidity dependence of

the nitrogen flux with respect to the fluxes of primary
cosmic rays, the nitrogen to oxygen flux ratio N=O was
computed using the data in Table I of the Supplemental
Material [16] and the data from Ref. [8] and is reported in
Table II of the Supplemental Material [16] as a function of
rigidity with its statistical and systematic errors. To provide
a comparison with previous measurements, the N=O ratio
as a function of EK was computed using the procedure
described in Ref. [21] and shown in Fig. 8(a) of the
Supplemental Material [16] with total errors as a function
of EK together with earlier measurements [4–7,27,28].
To examine the rigidity dependence of the nitrogen flux

with respect to secondary cosmic rays, the nitrogen to
boron flux ratio N=Bwas computed using data in Table I of
the Supplemental Material [16] and data from Ref. [9] and
is reported in Table III of the Supplemental Material [16]
with its statistical and systematic errors as a function of
rigidity. Figure 8(b) of the Supplemental Material [16]
shows the AMS N=B ratio with total errors as a function of
EK together with the results of earlier measurements [4–6].

To obtain the fractions of the primary Φ
P
N and secondary

Φ
S
N components in the nitrogen flux ΦN ¼ Φ

P
N þΦ

S
N, a fit

ofΦN to the weighted sum of a characteristic primary cosmic
ray flux, namely, oxygen ΦO [8], and of a characteristic
secondary cosmic ray flux, namely, boron ΦB [9],
was performed over the entire rigidity range, as shown in

Fig. 3(a). The fit yields Φ
P
N ¼ ð0.090� 0.002Þ ×ΦO and

Φ
S
N ¼ ð0.62� 0.02Þ ×ΦB with a χ

2=d:o:f: ¼ 51=64.

Figures 3(b) and 3(c) illustrate the result of this fit in the
N=O and N=B ratios, respectively. Figure 9 of the
Supplemental Material [16] shows the contributions of
the primary and secondary components in the nitrogen flux
as functions of rigidity. As seen from Fig. 9 of the
SupplementalMaterial [16], the contributionof the secondary
component in the nitrogen flux drops from 70% at a few GV

to below 30% above 1 TV. To verify the stability of the

result, the fit was repeated in the rigidity range above 60 GV

yielding ΦN¼ð0.083�0.005Þ×ΦOþð0.66�0.04Þ×ΦB

with a χ2=d:o:f: ¼ 18=25, fully compatible with the results

obtained with the fit over the entire rigidity range.
The observation that the nitrogen flux can be fit over a

wide rigidity range as the simple linear combination of

primary and secondary fluxes is a new and important result,

which permits the determination of the N=O abundance
ratio at the source without the need to consider the Galactic

propagation of cosmic rays.
Finally, Fig. 4 shows the three distinctly different rigidity

dependencies above 30 GV of the primary He, C, and O

cosmic ray fluxes, the secondary Li, Be, and B fluxes, and
the N flux.
In conclusion, a precision measurement of the nitrogen

flux in cosmic rays from 2.2 GV to 3.3 TV with detailed

studies of the systematic errors has been presented. The
flux deviates from a single power law. Its spectral index

rapidly hardens at high rigidities starting from ∼100 GV

and becomes identical to the spectral indices of primary

cosmic rays He, C, and O above ∼700 GV. Remarkably,

the nitrogen flux is well described over the entire rigidity

range by the sum of the primary fluxΦP
N equal to 9% of the

oxygen flux [8] and the secondary flux ΦS
N equal to 62% of

the boron flux [9]. This corresponds to a change of the

contribution of the secondary component in the nitrogen

flux from 70% at a few GV to below 30% above 1 TV.
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