000851772 001__ 851772
000851772 005__ 20210129235016.0
000851772 0247_ $$2doi$$a10.1103/PhysRevLett.121.117001
000851772 0247_ $$2ISSN$$a0031-9007
000851772 0247_ $$2ISSN$$a1079-7114
000851772 0247_ $$2ISSN$$a1092-0145
000851772 0247_ $$2Handle$$a2128/19687
000851772 0247_ $$2pmid$$apmid:30265102
000851772 0247_ $$2WOS$$aWOS:000444586600016
000851772 0247_ $$2altmetric$$aaltmetric:32767522
000851772 037__ $$aFZJ-2018-05287
000851772 082__ $$a550
000851772 1001_ $$0P:(DE-HGF)0$$aGrünhaupt, Lukas$$b0
000851772 245__ $$aLoss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum
000851772 260__ $$aCollege Park, Md.$$bAPS$$c2018
000851772 3367_ $$2DRIVER$$aarticle
000851772 3367_ $$2DataCite$$aOutput Types/Journal article
000851772 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536908565_30553
000851772 3367_ $$2BibTeX$$aARTICLE
000851772 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851772 3367_ $$00$$2EndNote$$aJournal Article
000851772 520__ $$aSuperconducting high kinetic inductance elements constitute a valuable resource for quantum circuit design and millimeter-wave detection. Granular aluminum (grAl) in the superconducting regime is a particularly interesting material since it has already shown a kinetic inductance in the range of nH/□ and its deposition is compatible with conventional Al/AlOx/Al Josephson junction fabrication. We characterize microwave resonators fabricated from grAl with a room temperature resistivity of 4×103 μΩ cm, which is a factor of 3 below the superconductor to insulator transition, showing a kinetic inductance fraction close to unity. The measured internal quality factors are on the order of Qi=105 in the single photon regime, and we demonstrate that nonequilibrium quasiparticles (QPs) constitute the dominant loss mechanism. We extract QP relaxation times in the range of 1 s and we observe QP bursts every ∼20 s. The current level of coherence of grAl resonators makes them attractive for integration in quantum devices, while it also evidences the need to reduce the density of nonequilibrium QPs.
000851772 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000851772 588__ $$aDataset connected to CrossRef
000851772 7001_ $$0P:(DE-HGF)0$$aMaleeva, Nataliya$$b1
000851772 7001_ $$0P:(DE-HGF)0$$aSkacel, Sebastian T.$$b2
000851772 7001_ $$0P:(DE-HGF)0$$aCalvo, Martino$$b3
000851772 7001_ $$0P:(DE-HGF)0$$aLevy-Bertrand, Florence$$b4
000851772 7001_ $$0P:(DE-HGF)0$$aUstinov, Alexey V.$$b5
000851772 7001_ $$0P:(DE-HGF)0$$aRotzinger, Hannes$$b6
000851772 7001_ $$0P:(DE-HGF)0$$aMonfardini, Alessandro$$b7
000851772 7001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b8
000851772 7001_ $$0P:(DE-HGF)0$$aPop, Ioan M.$$b9$$eCorresponding author
000851772 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.121.117001$$gVol. 121, no. 11, p. 117001$$n11$$p117001$$tPhysical review letters$$v121$$x1079-7114$$y2018
000851772 8564_ $$uhttps://juser.fz-juelich.de/record/851772/files/PhysRevLett.121.117001.pdf$$yOpenAccess
000851772 8564_ $$uhttps://juser.fz-juelich.de/record/851772/files/PhysRevLett.121.117001.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851772 909CO $$ooai:juser.fz-juelich.de:851772$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851772 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b8$$kFZJ
000851772 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000851772 9141_ $$y2018
000851772 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851772 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851772 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000851772 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2015
000851772 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2015
000851772 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851772 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851772 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851772 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851772 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851772 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851772 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851772 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851772 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000851772 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851772 920__ $$lyes
000851772 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000851772 980__ $$ajournal
000851772 980__ $$aVDB
000851772 980__ $$aUNRESTRICTED
000851772 980__ $$aI:(DE-Juel1)PGI-11-20170113
000851772 9801_ $$aFullTexts