001     851772
005     20210129235016.0
024 7 _ |a 10.1103/PhysRevLett.121.117001
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a 2128/19687
|2 Handle
024 7 _ |a pmid:30265102
|2 pmid
024 7 _ |a WOS:000444586600016
|2 WOS
024 7 _ |a altmetric:32767522
|2 altmetric
037 _ _ |a FZJ-2018-05287
082 _ _ |a 550
100 1 _ |a Grünhaupt, Lukas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum
260 _ _ |a College Park, Md.
|c 2018
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1536908565_30553
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Superconducting high kinetic inductance elements constitute a valuable resource for quantum circuit design and millimeter-wave detection. Granular aluminum (grAl) in the superconducting regime is a particularly interesting material since it has already shown a kinetic inductance in the range of nH/□ and its deposition is compatible with conventional Al/AlOx/Al Josephson junction fabrication. We characterize microwave resonators fabricated from grAl with a room temperature resistivity of 4×103  μΩ cm, which is a factor of 3 below the superconductor to insulator transition, showing a kinetic inductance fraction close to unity. The measured internal quality factors are on the order of Qi=105 in the single photon regime, and we demonstrate that nonequilibrium quasiparticles (QPs) constitute the dominant loss mechanism. We extract QP relaxation times in the range of 1 s and we observe QP bursts every ∼20  s. The current level of coherence of grAl resonators makes them attractive for integration in quantum devices, while it also evidences the need to reduce the density of nonequilibrium QPs.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Maleeva, Nataliya
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Skacel, Sebastian T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Calvo, Martino
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Levy-Bertrand, Florence
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ustinov, Alexey V.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rotzinger, Hannes
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Monfardini, Alessandro
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Catelani, Gianluigi
|0 P:(DE-Juel1)151130
|b 8
700 1 _ |a Pop, Ioan M.
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
773 _ _ |a 10.1103/PhysRevLett.121.117001
|g Vol. 121, no. 11, p. 117001
|0 PERI:(DE-600)1472655-5
|n 11
|p 117001
|t Physical review letters
|v 121
|y 2018
|x 1079-7114
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/851772/files/PhysRevLett.121.117001.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/851772/files/PhysRevLett.121.117001.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:851772
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)151130
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21