000851832 001__ 851832
000851832 005__ 20240712112842.0
000851832 0247_ $$2doi$$a10.1039/C8TA07313A
000851832 0247_ $$2ISSN$$a2050-7488
000851832 0247_ $$2ISSN$$a2050-7496
000851832 0247_ $$2Handle$$a2128/19737
000851832 0247_ $$2WOS$$aWOS:000448340100048
000851832 0247_ $$2altmetric$$aaltmetric:47219747
000851832 037__ $$aFZJ-2018-05332
000851832 041__ $$aEnglish
000851832 082__ $$a540
000851832 1001_ $$0P:(DE-Juel1)161141$$aYu, Shicheng$$b0$$eCorresponding author
000851832 245__ $$aSelf-standing NASICON-type electrodes with high mass loading for fast-cycling all-phosphate sodium-ion batteries
000851832 260__ $$aLondon [u.a.]$$bRSC$$c2018
000851832 3367_ $$2DRIVER$$aarticle
000851832 3367_ $$2DataCite$$aOutput Types/Journal article
000851832 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1538059387_10333
000851832 3367_ $$2BibTeX$$aARTICLE
000851832 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851832 3367_ $$00$$2EndNote$$aJournal Article
000851832 520__ $$aA scalable strategy has been realized to produce anodic NaTi2(PO4)3 and cathodic Na3V2(PO4)3 supported on carbon nanotube fabrics (CNFs) as binder-free, metal current collector-free, carbon additive-free, bendable and self-standing electrodes for sodium-ion batteries. The NaTi2(PO4)3 and Na3V2(PO4)3 particles are not only anchored on the surface of the CNFs but also uniformly embedded in the framework of the CNFs via a two-step coating process followed by annealing treatment. In the relevant voltage range, the high electrochemical stability of the 3D electron conduction network of carbon nanotubes in the self-standing electrodes was confirmed by in situ Raman spectroscopy. Both electrodes possessed a thickness of around 130 μm and a high mass loading of greater than 7.5 mg cm−2 and exhibited a high specific capacity, high rate capability and long lifespan in both half cells and all-phosphate full cells. The all-phosphate full cells delivered more than half of their theoretical capacity even at a high current rate of 100C. Besides, a capacity retention of 75.6% over 4000 cycles at a rate of 20C was achieved. The reason for the capacity fade in the full cell during long-term cycling was the formation of a solid electrolyte interphase layer, as was indicated by XRD, TEM and in operando NMR measurements. Furthermore, the promising practical possibilities of the electrodes and all-phosphate sodium-ion battery were demonstrated by a prototype flexible pouch cell and by stacking multiple electrodes in a laboratory-scale battery
000851832 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851832 588__ $$aDataset connected to CrossRef
000851832 7001_ $$0P:(DE-Juel1)172733$$aLiu, Zigeng$$b1$$ufzj
000851832 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b2
000851832 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b3
000851832 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4
000851832 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/C8TA07313A$$gp. 10.1039.C8TA07313A$$p18304-18317$$tJournal of materials chemistry / A$$v6$$x2050-7496$$y2018
000851832 8564_ $$uhttps://juser.fz-juelich.de/record/851832/files/c8ta07313a.pdf$$yOpenAccess
000851832 8564_ $$uhttps://juser.fz-juelich.de/record/851832/files/c8ta07313a.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851832 909CO $$ooai:juser.fz-juelich.de:851832$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161141$$aForschungszentrum Jülich$$b0$$kFZJ
000851832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172733$$aForschungszentrum Jülich$$b1$$kFZJ
000851832 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172733$$aMax-Planck-Institut für Chemische Energiekonversion $$b1
000851832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b2$$kFZJ
000851832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b3$$kFZJ
000851832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
000851832 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)156123$$aRWTH Aachen $$b4
000851832 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851832 9141_ $$y2018
000851832 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000851832 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851832 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851832 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2015
000851832 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER CHEM A : 2015
000851832 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851832 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851832 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851832 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851832 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000851832 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851832 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851832 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851832 920__ $$lyes
000851832 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000851832 9801_ $$aFullTexts
000851832 980__ $$ajournal
000851832 980__ $$aVDB
000851832 980__ $$aUNRESTRICTED
000851832 980__ $$aI:(DE-Juel1)IEK-9-20110218
000851832 981__ $$aI:(DE-Juel1)IET-1-20110218