001     851832
005     20240712112842.0
024 7 _ |a 10.1039/C8TA07313A
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a 2128/19737
|2 Handle
024 7 _ |a WOS:000448340100048
|2 WOS
024 7 _ |a altmetric:47219747
|2 altmetric
037 _ _ |a FZJ-2018-05332
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Yu, Shicheng
|0 P:(DE-Juel1)161141
|b 0
|e Corresponding author
245 _ _ |a Self-standing NASICON-type electrodes with high mass loading for fast-cycling all-phosphate sodium-ion batteries
260 _ _ |a London [u.a.]
|c 2018
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1538059387_10333
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A scalable strategy has been realized to produce anodic NaTi2(PO4)3 and cathodic Na3V2(PO4)3 supported on carbon nanotube fabrics (CNFs) as binder-free, metal current collector-free, carbon additive-free, bendable and self-standing electrodes for sodium-ion batteries. The NaTi2(PO4)3 and Na3V2(PO4)3 particles are not only anchored on the surface of the CNFs but also uniformly embedded in the framework of the CNFs via a two-step coating process followed by annealing treatment. In the relevant voltage range, the high electrochemical stability of the 3D electron conduction network of carbon nanotubes in the self-standing electrodes was confirmed by in situ Raman spectroscopy. Both electrodes possessed a thickness of around 130 μm and a high mass loading of greater than 7.5 mg cm−2 and exhibited a high specific capacity, high rate capability and long lifespan in both half cells and all-phosphate full cells. The all-phosphate full cells delivered more than half of their theoretical capacity even at a high current rate of 100C. Besides, a capacity retention of 75.6% over 4000 cycles at a rate of 20C was achieved. The reason for the capacity fade in the full cell during long-term cycling was the formation of a solid electrolyte interphase layer, as was indicated by XRD, TEM and in operando NMR measurements. Furthermore, the promising practical possibilities of the electrodes and all-phosphate sodium-ion battery were demonstrated by a prototype flexible pouch cell and by stacking multiple electrodes in a laboratory-scale battery
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Liu, Zigeng
|0 P:(DE-Juel1)172733
|b 1
|u fzj
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 2
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 3
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 4
773 _ _ |a 10.1039/C8TA07313A
|g p. 10.1039.C8TA07313A
|0 PERI:(DE-600)2702232-8
|p 18304-18317
|t Journal of materials chemistry / A
|v 6
|y 2018
|x 2050-7496
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/851832/files/c8ta07313a.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/851832/files/c8ta07313a.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:851832
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172733
910 1 _ |a Max-Planck-Institut für Chemische Energiekonversion
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)172733
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MATER CHEM A : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21