001     852442
005     20240708134001.0
037 _ _ |a FZJ-2018-05388
100 1 _ |a Brandt, Felix
|0 P:(DE-Juel1)144040
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Goldschmidt
|c Boston
|d 2018-08-12 - 2018-08-17
|w USA
245 _ _ |a Ra Uptake by the Sr-Rich Solid Solution of (Sr, Ba)SO4
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1537347937_29575
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Solid solution formation is an important mechanism of radionuclide uptake by mineral phases which is favored in natural systems due to a lowered configurational entropy. Recent studies have shown that the formationof a (Ba,Ra)SO4 solid solution significantly reduces the solubility of 226Ra in aqueous systems. This result is very relevant for the direct disposal of spent nuclear fuel in a deep geological formation, where 226Ra would dominate the dose after 100,000 years [1]. In natural systems SrSO4 often occurs along with BaSO4 implying that Ra-uptake should be assessed within the system of (Sr,Ba,Ra)SO4 + H2O. A recent thermodynamic modelling study [2] predicted a significant uptake of Ra into the ternary (Sr,Ba,Ra)SO4 solid-solution. Here we present results of long-term batch-recristallisation experiments on Ra-uptake in a Sr-rich part of the ternary system. A mechanical mixture of celestite with a small amount of barite and a (Sr,Ba)SO4 solid solution of equivalent comoposition were put into a contact with 226Ra,aq. We observed a significant uptake of 226Ra in both cases proceeding via the formation of the minor ternary Sr-, Ba- and Ra-rich phase within the major Sr-rich phase. In longer experiments the ternary phase disappeared leading to the formation of a mixture of Sr- and Ba-rich phases, within which Ra could not be detected by scanning transmission electron microscopy-energy-dispersive X-ray spetroscopy (STEM-EDX). The final 226Ra concentrations in both experiments were similar and close to predicted levels. The formation of the intermediate phase is interpreted based on structural and kinetic considerations. [1] Norrby, S. et al. (1997). “SKI SITE-94 Saekerhetsanalys foer Djupfoervar iett Kristallint berg”.Stockholm, Sweden. [2] Vinograd et al. (2018). Applied Geochemistry, in press.
536 _ _ |a 161 - Nuclear Waste Management (POF3-161)
|0 G:(DE-HGF)POF3-161
|c POF3-161
|f POF III
|x 0
700 1 _ |a Klinkenberg, Martina
|0 P:(DE-Juel1)130364
|b 1
|u fzj
700 1 _ |a Poonoosamy, Jenna
|0 P:(DE-Juel1)169154
|b 2
|u fzj
700 1 _ |a Barthel, Juri
|0 P:(DE-Juel1)130525
|b 3
|u fzj
700 1 _ |a Weber, Juliane
|0 P:(DE-Juel1)157607
|b 4
700 1 _ |a Bosbach, Dirk
|0 P:(DE-Juel1)130324
|b 5
|u fzj
909 C O |o oai:juser.fz-juelich.de:852442
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144040
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130364
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169154
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130525
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130324
913 1 _ |a DE-HGF
|l Nukleare Entsorgung und Sicherheit sowie Strahlenforschung
|1 G:(DE-HGF)POF3-160
|0 G:(DE-HGF)POF3-161
|2 G:(DE-HGF)POF3-100
|v Nuclear Waste Management
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21