Hauptseite > Publikationsdatenbank > Early postnatal behavioral, cellular, and molecular changes in models of Huntington disease are reversible by HDAC inhibition > print |
001 | 852456 | ||
005 | 20210129235058.0 | ||
024 | 7 | _ | |a 10.1073/pnas.1807962115 |2 doi |
024 | 7 | _ | |a 0027-8424 |2 ISSN |
024 | 7 | _ | |a 1091-6490 |2 ISSN |
024 | 7 | _ | |a 2128/19792 |2 Handle |
024 | 7 | _ | |a pmid:30150378 |2 pmid |
024 | 7 | _ | |a WOS:000444257200022 |2 WOS |
024 | 7 | _ | |a altmetric:47164285 |2 altmetric |
037 | _ | _ | |a FZJ-2018-05402 |
082 | _ | _ | |a 000 |
100 | 1 | _ | |a Siebzehnrübl, Florian A. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Early postnatal behavioral, cellular, and molecular changes in models of Huntington disease are reversible by HDAC inhibition |
260 | _ | _ | |a Washington, DC |c 2018 |b National Acad. of Sciences |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1539255096_11379 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene (HTT). Although mutant HTT is expressed during embryonic development and throughout life, clinical HD usually manifests later in adulthood. A number of studies document neurodevelopmental changes associated with mutant HTT, but whether these are reversible under therapy remains unclear. Here, we identify very early behavioral, molecular, and cellular changes in preweaning transgenic HD rats and mice. Reduced ultrasonic vocalization, loss of prepulse inhibition, and increased risk taking are accompanied by disturbances of dopaminergic regulation in vivo, reduced neuronal differentiation capacity in subventricular zone stem/progenitor cells, and impaired neuronal and oligodendrocyte differentiation of mouse embryo-derived neural stem cells in vitro. Interventional treatment of this early phenotype with the histone deacetylase inhibitor (HDACi) LBH589 led to significant improvement in behavioral changes and markers of dopaminergic neurotransmission and complete reversal of aberrant neuronal differentiation in vitro and in vivo. Our data support the notion that neurodevelopmental changes contribute to the prodromal phase of HD and that early, presymptomatic intervention using HDACi may represent a promising novel treatment approach for HD. |
536 | _ | _ | |a 573 - Neuroimaging (POF3-573) |0 G:(DE-HGF)POF3-573 |c POF3-573 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Raber, Kerstin A. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Urbach, Yvonne K. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Schulze-Krebs, Anja |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Canneva, Fabio |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Moceri, Sandra |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Habermeyer, Johanna |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Achoui, Dalila |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Gupta, Bhavana |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Steindler, Dennis A. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Stephan, Michael |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Nguyen, Huu Phuc |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Bonin, Michael |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Riess, Olaf |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Bauer, Andreas |0 P:(DE-Juel1)131672 |b 14 |
700 | 1 | _ | |a Aigner, Ludwig |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Couillard-Despres, Sebastien |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Paucar, Martin Arce |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Svenningsson, Per |0 P:(DE-HGF)0 |b 18 |
700 | 1 | _ | |a Osmand, Alexander |0 P:(DE-HGF)0 |b 19 |
700 | 1 | _ | |a Andreew, Alexander |0 P:(DE-HGF)0 |b 20 |
700 | 1 | _ | |a Zabel, Claus |0 P:(DE-HGF)0 |b 21 |
700 | 1 | _ | |a Weiss, Andreas |0 P:(DE-HGF)0 |b 22 |
700 | 1 | _ | |a Kuhn, Rainer |0 P:(DE-HGF)0 |b 23 |
700 | 1 | _ | |a Moussaoui, Saliha |0 P:(DE-HGF)0 |b 24 |
700 | 1 | _ | |a Blockx, Ines |0 P:(DE-HGF)0 |b 25 |
700 | 1 | _ | |a Van der Linden, Annemie |0 P:(DE-HGF)0 |b 26 |
700 | 1 | _ | |a Cheong, Rachel Y. |0 P:(DE-HGF)0 |b 27 |
700 | 1 | _ | |a Roybon, Laurent |0 P:(DE-HGF)0 |b 28 |
700 | 1 | _ | |a Petersén, Åsa |0 P:(DE-HGF)0 |b 29 |
700 | 1 | _ | |a von Hörsten, Stephan |0 P:(DE-HGF)0 |b 30 |
773 | _ | _ | |a 10.1073/pnas.1807962115 |g Vol. 115, no. 37, p. E8765 - E8774 |0 PERI:(DE-600)1461794-8 |n 37 |p E8765 - E8774 |t Proceedings of the National Academy of Sciences of the United States of America |v 115 |y 2018 |x 1091-6490 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/852456/files/Early%20postnatal%20behavioral%2C%20cellular%2C%20and%20molecular%20changes%20in%20models%20of%20Huntington%20disease%20are%20reversible%20by%20HDAC%20inhibition-1.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/852456/files/FZJ-2018-_Early%20postnatal%20behavioral%2C%20cellular%2C%20and%20molecular%20changes%20in%20models%20of%20Huntington%20disease%20are%20reversible%20by%20HDAC%20inhibition-3.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/852456/files/Early%20postnatal%20behavioral%2C%20cellular%2C%20and%20molecular%20changes%20in%20models%20of%20Huntington%20disease%20are%20reversible%20by%20HDAC%20inhibition-1.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/852456/files/FZJ-2018-_Early%20postnatal%20behavioral%2C%20cellular%2C%20and%20molecular%20changes%20in%20models%20of%20Huntington%20disease%20are%20reversible%20by%20HDAC%20inhibition-3.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:852456 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a University of Florida, Gainesville |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Cardiff University School of Biosciences, Cardiff |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Friedrich-Alexander-University, Erlangen |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Friedrich-Alexander-University, Erlangen |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Friedrich-Alexander-University, Erlangen |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Friedrich-Alexander-University, Erlangen |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Friedrich-Alexander-University, Erlangen |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Friedrich-Alexander-University, Erlangen |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a University of Florida, Gainesville |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Cardiff University School of Biosciences, Cardiff |0 I:(DE-HGF)0 |b 8 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a University of Florida, Gainesville |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Medford |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Medical School Hannover |0 I:(DE-HGF)0 |b 10 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a University of Tübingen |0 I:(DE-HGF)0 |b 11 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a University of Tübingen |0 I:(DE-HGF)0 |b 12 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a University of Tübingen |0 I:(DE-HGF)0 |b 13 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)131672 |
910 | 1 | _ | |a Paracelsus Medical University, Salzburg |0 I:(DE-HGF)0 |b 15 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Paracelsus Medical University, Salzburg |0 I:(DE-HGF)0 |b 16 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Physiology and Pharmacology, Karolinska Institute, Solna |0 I:(DE-HGF)0 |b 17 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Physiology and Pharmacology, Karolinska Institute, Solna |0 I:(DE-HGF)0 |b 18 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a University of Tennessee, Knoxville |0 I:(DE-HGF)0 |b 19 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Charité-Universitätsmedizin, Berlin |0 I:(DE-HGF)0 |b 20 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Charité-Universitätsmedizin, Berlin |0 I:(DE-HGF)0 |b 21 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Novartis Pharma AG, Base |0 I:(DE-HGF)0 |b 22 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Novartis Pharma AG, Base |0 I:(DE-HGF)0 |b 23 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Novartis Pharma AG, Base |0 I:(DE-HGF)0 |b 24 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a University of Antwerp, Antwerp |0 I:(DE-HGF)0 |b 25 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a University of Antwerp, Antwerp |0 I:(DE-HGF)0 |b 26 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Lund University, Lund |0 I:(DE-HGF)0 |b 27 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Lund University, Lund |0 I:(DE-HGF)0 |b 28 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Lund University, Lund |0 I:(DE-HGF)0 |b 29 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Friedrich-Alexander-University, Erlangen |0 I:(DE-HGF)0 |b 30 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-573 |2 G:(DE-HGF)POF3-500 |v Neuroimaging |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b P NATL ACAD SCI USA : 2015 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b P NATL ACAD SCI USA : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-2-20090406 |k INM-2 |l Molekulare Organisation des Gehirns |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-2-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|