001     852463
005     20240712100833.0
024 7 _ |a 10.5194/acp-2018-232
|2 doi
024 7 _ |a 1680-7367
|2 ISSN
024 7 _ |a 1680-7375
|2 ISSN
024 7 _ |a 2128/19713
|2 Handle
024 7 _ |a altmetric:35949602
|2 altmetric
037 _ _ |a FZJ-2018-05409
082 _ _ |a 550
100 1 _ |a Schulz, Christiane
|0 0000-0003-4413-8266
|b 0
|e Corresponding author
245 _ _ |a Aircraft-based observations of isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) in the tropical upper troposphere over the Amazon region
260 _ _ |a Katlenburg-Lindau
|c 2018
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1537367515_29575
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a During the ACRIDICON-CHUVA field project (September–October 2014; based in Manaus, Brazil) aircraft-based in-situ measurements of aerosol chemical composition were conducted in the tropical troposphere over the Amazon using the High Altitude and Long Range Research Aircraft (HALO), covering altitudes from the boundary layer height up to 14.4km. The submicron non-refractory aerosol was characterized by flash-vaporization/electron impact-ionization aerosol particle mass spectrometry. The results show that significant secondary organic aerosol (SOA) formation by isoprene oxidation products occurs in the upper troposphere, leading to increased organic aerosol mass concentrations above 10km altitude. The median organic mass concentrations in the upper troposphere above 10km range between 1.0 and 2.1μgm−3 (referring to standard temperature and pressure; STP) with interquartile ranges of 0.6 to 3.0μgm−3 (STP), representing 70% of the total submicron non-refractory aerosol particle mass. The presence of isoprene epoxydiol-derived isoprene secondary organic aerosol (IEPOX-SOA) was confirmed by marker peaks in the mass spectra. We estimate the contribution of IEPOX-SOA to the total organic aerosol in the upper troposphere to be about 20%. After isoprene emission from vegetation, oxidation processes occur at low altitudes and/or during transport to higher altitudes, which may lead to the formation of IEPOX (one oxidation product of isoprene). Reactive uptake or condensation of IEPOX on pre-existing particles leads to IEPOX-SOA formation and subsequently increasing organic mass in the upper troposphere. This organic mass increase was accompanied by an increase of the nitrate mass concentrations, most likely due to NOx production by lightning. We further found that the ammonium contained in the aerosol particles is not sufficient to neutralize the particulate sulfate and nitrate. Analysis of the ion ratio of NO+ to NO2+ indicated that nitrate in the upper troposphere exists mainly in the form of organic nitrate. IEPOX-SOA and organic nitrates are coincident with each other, indicating that IEPOX-SOA forms in the upper troposphere either on acidic nitrate particles forming organic nitrates derived from IEPOX or on already neutralized organic nitrate aerosol particles.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schneider, Johannes
|0 0000-0001-7169-3973
|b 1
700 1 _ |a Amorim Holanda, Bruna
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Appel, Oliver
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Costa, Anja
|0 P:(DE-Juel1)156523
|b 4
700 1 _ |a de Sá, Suzane S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dreiling, Volker
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Fütterer, Daniel
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Jurkat-Witschas, Tina
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Klimach, Thomas
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Krämer, Martina
|0 P:(DE-Juel1)129131
|b 10
700 1 _ |a Martin, Scot T.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Mertes, Stephan
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Pöhlker, Mira L.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Sauer, Daniel
|0 0000-0002-0317-5063
|b 14
700 1 _ |a Voigt, Christiane
|0 0000-0001-8925-7731
|b 15
700 1 _ |a Weinzierl, Bernadett
|0 0000-0003-4555-5686
|b 16
700 1 _ |a Ziereis, Helmut
|0 0000-0001-5483-5669
|b 17
700 1 _ |a Zöger, Martin
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Andreae, Meinrat O.
|0 0000-0003-1968-7925
|b 19
700 1 _ |a Artaxo, Paulo
|0 0000-0001-7754-3036
|b 20
700 1 _ |a Machado, Luiz A. T.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Pöschl, Ulrich
|0 0000-0003-1412-3557
|b 22
700 1 _ |a Wendisch, Manfred
|0 0000-0002-4652-5561
|b 23
700 1 _ |a Borrmann, Stephan
|0 P:(DE-HGF)0
|b 24
773 _ _ |a 10.5194/acp-2018-232
|g p. 1 - 32
|0 PERI:(DE-600)2069857-4
|p 1 - 32
|t Atmospheric chemistry and physics / Discussions
|v -
|y 2018
|x 1680-7375
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/852463/files/acp-2018-232.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/852463/files/acp-2018-232.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:852463
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)129131
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21