000852485 001__ 852485
000852485 005__ 20240711085614.0
000852485 0247_ $$2doi$$a10.1002/adfm.201804472
000852485 0247_ $$2ISSN$$a1057-9257
000852485 0247_ $$2ISSN$$a1099-0712
000852485 0247_ $$2ISSN$$a1616-301X
000852485 0247_ $$2ISSN$$a1616-3028
000852485 0247_ $$2WOS$$aWOS:000456422500005
000852485 0247_ $$2altmetric$$aaltmetric:48965525
000852485 037__ $$aFZJ-2018-05416
000852485 041__ $$aEnglish
000852485 082__ $$a620
000852485 1001_ $$aHufnagel, Alexander G.$$b0
000852485 245__ $$aWhy Tin-Doping Enhances the Efficiency of Hematite Photoanodes for Water Splitting-The Full Picture
000852485 260__ $$aWeinheim$$bWiley-VCH$$c2018
000852485 3367_ $$2DRIVER$$aarticle
000852485 3367_ $$2DataCite$$aOutput Types/Journal article
000852485 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547821202_9364
000852485 3367_ $$2BibTeX$$aARTICLE
000852485 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852485 3367_ $$00$$2EndNote$$aJournal Article
000852485 520__ $$aThe beneficial effects of Sn(IV) as a dopant in ultrathin hematite (α‐Fe2O3) photoanodes for water oxidation are examined. Different Sn concentration profiles are prepared by alternating atomic layer deposition of Fe2O3 and SnO x . Combined data from spectrophotometry and intensity‐modulated photocurrent spectroscopy yields the individual process efficiencies for light harvesting, charge separation, and charge transfer. The best performing photoanodes are Sn‐doped both on the surface and in the subsurface region and benefit from enhanced charge separation and transfer. Sn‐doping throughout the bulk of the hematite photoanode causes segregation at the grain boundaries and hence a lower overall efficiency. Fe2O3 (0001) and terminations, shown to be dominant by microstructural analysis, are investigated by density functional theory (DFT) calculations. The energetics of surface intermediates during the oxygen evolution reaction (OER) reveal that while Sn‐doping decreases the overpotential on the (0001) surface, the Fe2O3 orientation shows one of the lowest overpotentials reported for hematite so far. Electronic structure calculations demonstrate that Sn‐doping on the surface also enhances the charge transfer efficiency by elimination of surface hole trap states (passivation) and that subsurface Sn‐doping introduces a gradient of the band edges that reinforces the band bending at the semiconductor/electrolyte interface and thus boosts charge separation.
000852485 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000852485 588__ $$aDataset connected to CrossRef
000852485 7001_ $$aHajiyani, Hamidreza$$b1
000852485 7001_ $$aZhang, Siyuan$$b2
000852485 7001_ $$aLi, Tong$$b3
000852485 7001_ $$aKasian, Olga$$b4
000852485 7001_ $$aGault, Baptiste$$b5
000852485 7001_ $$aBreitbach, Benjamin$$b6
000852485 7001_ $$aBein, Thomas$$b7
000852485 7001_ $$0P:(DE-HGF)0$$aFattakhova-Rohlfing, Dina$$b8
000852485 7001_ $$0P:(DE-HGF)0$$aScheu, Christina$$b9$$eCorresponding author
000852485 7001_ $$00000-0002-4423-8980$$aPentcheva, Rossitza$$b10$$eCorresponding author
000852485 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.201804472$$gp. 1804472 -$$n52$$p1804472 -$$tAdvanced functional materials$$v28$$x1616-301X$$y2018
000852485 8564_ $$uhttps://juser.fz-juelich.de/record/852485/files/Hufnagel_et_al-2018-Advanced_Functional_Materials.pdf$$yRestricted
000852485 8564_ $$uhttps://juser.fz-juelich.de/record/852485/files/Hufnagel_et_al-2018-Advanced_Functional_Materials.pdf?subformat=pdfa$$xpdfa$$yRestricted
000852485 909CO $$ooai:juser.fz-juelich.de:852485$$pVDB
000852485 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b8$$kFZJ
000852485 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000852485 9141_ $$y2018
000852485 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852485 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2015
000852485 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852485 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000852485 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000852485 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000852485 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852485 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852485 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000852485 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000852485 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bADV FUNCT MATER : 2015
000852485 920__ $$lyes
000852485 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000852485 980__ $$ajournal
000852485 980__ $$aVDB
000852485 980__ $$aI:(DE-Juel1)IEK-1-20101013
000852485 980__ $$aUNRESTRICTED
000852485 981__ $$aI:(DE-Juel1)IMD-2-20101013