000852495 001__ 852495
000852495 005__ 20240708133002.0
000852495 0247_ $$2doi$$a10.1016/j.ijhydene.2018.12.030
000852495 0247_ $$2ISSN$$a0360-3199
000852495 0247_ $$2ISSN$$a1879-3487
000852495 0247_ $$2WOS$$aWOS:000457952100002
000852495 037__ $$aFZJ-2018-05426
000852495 082__ $$a620
000852495 1001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b0$$eCorresponding author
000852495 245__ $$aPEM Water Electrolysis: Innovative Approaches towards Catalyst Separation, Recovery and Recycling
000852495 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000852495 3367_ $$2DRIVER$$aarticle
000852495 3367_ $$2DataCite$$aOutput Types/Journal article
000852495 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548323755_3165
000852495 3367_ $$2BibTeX$$aARTICLE
000852495 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852495 3367_ $$00$$2EndNote$$aJournal Article
000852495 520__ $$aWe report the development of a facile recycling process for catalyst coated membranes (CCMs) used in polymer electrolyte membrane (PEM) water electrolyzers. After performance evaluation in an assembled electrolysis cell, ultrasonication is used to provide high-yield recovery of not only the noble-metal catalyst materials, but also of the fluoropolymer membrane itself, without the release of hazardous gases. Transmission electron microscopy (TEM) and electrochemical characterization are used to confirm the retention of catalyst particle size, and of the performance of the recycled CCMs. Furthermore, our projections indicate that, if this approach is widely employed, existing resources of noble metals will prove sufficient for the gigawatt-scale implementation of PEM water electrolyzers. This has profound implications for the achievement of current targets for reducing the consumption of precious metals for applications in electrolyzers, fuel cells and other energy storage devices.
000852495 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000852495 588__ $$aDataset connected to CrossRef
000852495 7001_ $$0P:(DE-Juel1)172827$$aKeeley, Gareth$$b1
000852495 7001_ $$0P:(DE-Juel1)143886$$aHoltz, Daniel$$b2
000852495 7001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b3
000852495 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b4
000852495 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b5
000852495 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6
000852495 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2018.12.030$$gp. S0360319918339338$$n7$$p3450-3455$$tInternational journal of hydrogen energy$$v44$$x0360-3199$$y2019
000852495 909CO $$ooai:juser.fz-juelich.de:852495$$pVDB
000852495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b0$$kFZJ
000852495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172827$$aForschungszentrum Jülich$$b1$$kFZJ
000852495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143886$$aForschungszentrum Jülich$$b2$$kFZJ
000852495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b3$$kFZJ
000852495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b4$$kFZJ
000852495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b5$$kFZJ
000852495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ
000852495 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b6$$kRWTH
000852495 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000852495 9141_ $$y2019
000852495 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2017
000852495 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852495 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852495 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000852495 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000852495 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000852495 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000852495 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000852495 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852495 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852495 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000852495 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000852495 920__ $$lyes
000852495 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000852495 980__ $$ajournal
000852495 980__ $$aVDB
000852495 980__ $$aI:(DE-Juel1)IEK-3-20101013
000852495 980__ $$aUNRESTRICTED
000852495 981__ $$aI:(DE-Juel1)ICE-2-20101013