000852500 001__ 852500
000852500 005__ 20240711101516.0
000852500 0247_ $$2doi$$a10.1039/C9EE00832B
000852500 0247_ $$2ISSN$$a1754-5692
000852500 0247_ $$2ISSN$$a1754-5706
000852500 0247_ $$2Handle$$a2128/23244
000852500 0247_ $$2altmetric$$aaltmetric:69808348
000852500 0247_ $$2WOS$$aWOS:000494816300014
000852500 037__ $$aFZJ-2018-05428
000852500 082__ $$a690
000852500 1001_ $$0P:(DE-HGF)0$$aKraglund, Mikkel R.$$b0
000852500 245__ $$aIon-solvating Membranes as a New Approach towards High Rate Alkaline Electrolyzers
000852500 260__ $$aCambridge$$bRSC Publ.$$c2019
000852500 3367_ $$2DRIVER$$aarticle
000852500 3367_ $$2DataCite$$aOutput Types/Journal article
000852500 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573201024_23090
000852500 3367_ $$2BibTeX$$aARTICLE
000852500 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852500 3367_ $$00$$2EndNote$$aJournal Article
000852500 520__ $$aEnergy efficient and cost efficient water electrolysis is essential for the large scale implementation of renewable energy. The two commercial low temperature electrolyzer technologies each suffer from serious drawbacks. The proton exchange membrane (PEM) electrolyzers remain expensive and depend strongly on the scarce metal iridium. The alkaline electrolyzers suffer from a large footprint due to low rate capability. Here we present an approach to make an alkaline electrolyzer perform like a PEM electrolyzer by means of an ion-solvating membrane. A long lasting effort to replace the state-of-the-art thick porous diaphragm by an anion exchange membrane has not proven successful. The ion-solvating membrane represents a third way. Demonstration cells based on KOH doped polybenzimidazole membranes and nickel based electrodes exhibited 1700 mA cm−2 at 1.8 V. This is far exceeding what has previously been achieved with membranes in alkaline environments without platinum group metal catalysts, and is comparable to state-of-the-art PEM electrolyzers.
000852500 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000852500 588__ $$aDataset connected to CrossRef
000852500 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b1
000852500 7001_ $$0P:(DE-HGF)0$$aSchiller, Günter$$b2
000852500 7001_ $$0P:(DE-HGF)0$$aAili, David$$b3
000852500 7001_ $$0P:(DE-HGF)0$$aChristensen, Erik$$b4
000852500 7001_ $$0P:(DE-HGF)0$$aJensen, Jens Oluf$$b5$$eCorresponding author
000852500 773__ $$0PERI:(DE-600)2439879-2$$a10.1039/C9EE00832B$$gp. 10.1039.C9EE00832B$$n11$$p3313-3318 $$tEnergy & environmental science$$v12$$x1754-5692$$y2019
000852500 8564_ $$uhttps://juser.fz-juelich.de/record/852500/files/c9ee00832b.pdf$$yOpenAccess
000852500 8564_ $$uhttps://juser.fz-juelich.de/record/852500/files/c9ee00832b.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000852500 909CO $$ooai:juser.fz-juelich.de:852500$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000852500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b1$$kFZJ
000852500 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000852500 9141_ $$y2019
000852500 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852500 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000852500 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG ENVIRON SCI : 2017
000852500 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bENERG ENVIRON SCI : 2017
000852500 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000852500 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852500 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000852500 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852500 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000852500 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000852500 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000852500 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000852500 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000852500 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000852500 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852500 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000852500 920__ $$lyes
000852500 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000852500 9801_ $$aFullTexts
000852500 980__ $$ajournal
000852500 980__ $$aVDB
000852500 980__ $$aUNRESTRICTED
000852500 980__ $$aI:(DE-Juel1)IEK-3-20101013
000852500 981__ $$aI:(DE-Juel1)ICE-2-20101013