000852513 001__ 852513
000852513 005__ 20240709112129.0
000852513 0247_ $$2doi$$a10.1016/j.ijhydene.2019.03.183
000852513 0247_ $$2ISSN$$a0360-3199
000852513 0247_ $$2ISSN$$a1879-3487
000852513 0247_ $$2WOS$$aWOS:000470051300003
000852513 037__ $$aFZJ-2018-05441
000852513 082__ $$a660
000852513 1001_ $$0P:(DE-Juel1)129845$$aEmonts, Bernd$$b0$$eCorresponding author
000852513 245__ $$aFlexible Sector Coupling with Hydrogen: Climate-Friendly Fuel Supply for Road Transport
000852513 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000852513 3367_ $$2DRIVER$$aarticle
000852513 3367_ $$2DataCite$$aOutput Types/Journal article
000852513 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627652529_2311
000852513 3367_ $$2BibTeX$$aARTICLE
000852513 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852513 3367_ $$00$$2EndNote$$aJournal Article
000852513 520__ $$aThe substantial expansion of renewable energy sources is creating the foundation to successfully transform the German energy sector (the so-called ‘Energiewende’). A by-product of this development is the corresponding capacity demand for the transportation, distribution and storage of energy. Hydrogen produced by electrolysis offers a promising solution to these challenges, although the willingness to invest in hydrogen technologies requires the identification of competitive and climate-friendly pathways in the long run. Therefore, this paper employs a pathway analysis to investigate the use of renewable hydrogen in the German passenger car transportation sector in terms of varying market penetration scenarios for fuel cell-electric vehicles (FCEVs). The investigation focuses on how an H2 infrastructure can be designed on a national scale with various supply chain networks to establish robust pathways and important technologies, which has not yet been done. Therefore, the study includes all related aspects, from hydrogen production to fueling stations, for a given FCEV market penetration scenario, as well as the CO2 reduction potential that can be achieved for the transport sector. A total of four scenarios are considered, estimating an FCEV market share of 1–75% by the year 2050. This corresponds to an annual production of 0.02–2.88 million tons of hydrogen. The findings show that the most cost-efficient H2 supply (well-to-tank: 6.7–7.5 €/kgH2) can be achieved in high demand scenarios (FCEV market shares of 30% and 75%) through a combination of cavern storage and pipeline transport. For low-demand scenarios, however, technology pathways involving LH2 and LOHC truck transport represent the most cost-efficient options (well-to-tank: 8.2–11.4 €/kgH2).
000852513 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000852513 588__ $$aDataset connected to CrossRef
000852513 7001_ $$0P:(DE-Juel1)145405$$aStenzel, Peter$$b1
000852513 7001_ $$0P:(DE-Juel1)165160$$aWelder, Lara$$b2
000852513 7001_ $$0P:(DE-Juel1)172632$$aKnicker, Felix$$b3
000852513 7001_ $$0P:(DE-Juel1)168335$$aReuss, Markus$$b4
000852513 7001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b5
000852513 7001_ $$0P:(DE-HGF)0$$aGörner, Klaus$$b6
000852513 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b7
000852513 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b8
000852513 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2019.03.183$$gp. S0360319919312121$$p12918-12930$$tInternational journal of hydrogen energy$$v44$$x0360-3199$$y2019
000852513 909CO $$ooai:juser.fz-juelich.de:852513$$pVDB
000852513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129845$$aForschungszentrum Jülich$$b0$$kFZJ
000852513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145405$$aForschungszentrum Jülich$$b1$$kFZJ
000852513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165160$$aForschungszentrum Jülich$$b2$$kFZJ
000852513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168335$$aForschungszentrum Jülich$$b4$$kFZJ
000852513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b5$$kFZJ
000852513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b7$$kFZJ
000852513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b8$$kFZJ
000852513 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b8$$kRWTH
000852513 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000852513 9141_ $$y2018
000852513 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000852513 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852513 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852513 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000852513 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000852513 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000852513 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000852513 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000852513 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852513 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852513 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000852513 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000852513 920__ $$lyes
000852513 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000852513 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x1
000852513 980__ $$ajournal
000852513 980__ $$aVDB
000852513 980__ $$aI:(DE-Juel1)IEK-3-20101013
000852513 980__ $$aI:(DE-Juel1)IEK-14-20191129
000852513 980__ $$aUNRESTRICTED
000852513 981__ $$aI:(DE-Juel1)ICE-2-20101013
000852513 981__ $$aI:(DE-Juel1)IET-4-20191129
000852513 981__ $$aI:(DE-Juel1)IET-4-20191129