| Hauptseite > Publikationsdatenbank > The low-temperature heat capacity of the Sb 2 Te 3− x Se x solid solution from experiment and theory > print |
| 001 | 852521 | ||
| 005 | 20250129094236.0 | ||
| 024 | 7 | _ | |a 10.1088/1361-648X/aade0e |2 doi |
| 024 | 7 | _ | |a 0953-8984 |2 ISSN |
| 024 | 7 | _ | |a 1361-648X |2 ISSN |
| 024 | 7 | _ | |a pmid:30168444 |2 pmid |
| 024 | 7 | _ | |a WOS:000444977000002 |2 WOS |
| 024 | 7 | _ | |a altmetric:48610127 |2 altmetric |
| 037 | _ | _ | |a FZJ-2018-05449 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Herrmann, Markus |0 P:(DE-Juel1)169458 |b 0 |
| 245 | _ | _ | |a The low-temperature heat capacity of the Sb 2 Te 3− x Se x solid solution from experiment and theory |
| 260 | _ | _ | |a Bristol |c 2018 |b IOP Publ. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1538052007_21440 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The lattice dynamics of Sb2Te3−x Se x (x = 0, 0.6, 1.2, 1.8, 3) mixed crystals have been studied by a combination of low-temperature heat-capacity measurements between 2–300 K and first-principles calculations. The results from the experimental and theoretical investigations are in excellent agreement. While Sb2Se3 can be considered as a harmonic lattice oscillator in this temperature range, for the isostructural compounds Sb2Te3, Sb2Se0.6Te2.4, Sb2Se1.2Te1.8 and Sb2Se1.8Te1.2 (tetradymite structure type; R m) a small anharmonic contribution to the total heat capacity has to be taken into account at temperatures above 250 K. For the compounds which crystallize in the tetradymite structure type the experimental and theoretical data show unambiguously that the exchange of Te by Se leads to an increase of the bonding polarity and consequently to a hardening of the bonding which is reflected in an increase of the Debye temperatures with increasing Se contents. In addition, our studies clearly demonstrate that the mixed crystals in the stability field of the tetradymite structure type are characterized by a strong non-ideal mixing behavior. |
| 536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
| 536 | _ | _ | |a 524 - Controlling Collective States (POF3-524) |0 G:(DE-HGF)POF3-524 |c POF3-524 |f POF III |x 1 |
| 536 | _ | _ | |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621) |0 G:(DE-HGF)POF3-6212 |c POF3-621 |f POF III |x 2 |
| 536 | _ | _ | |a 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621) |0 G:(DE-HGF)POF3-6213 |c POF3-621 |f POF III |x 3 |
| 536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) |0 G:(DE-HGF)POF3-6G4 |c POF3-623 |f POF III |x 4 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Stoffel, R. P. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Dronskowski, R. |0 0000-0002-1925-9624 |b 2 |
| 700 | 1 | _ | |a Friese, K. |0 P:(DE-Juel1)145694 |b 3 |e Corresponding author |
| 773 | _ | _ | |a 10.1088/1361-648X/aade0e |g Vol. 30, no. 40, p. 405702 - |0 PERI:(DE-600)1472968-4 |n 40 |p 405702 - |t Journal of physics / Condensed matter |v 30 |y 2018 |x 1361-648X |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/852521/files/Herrmann_2018_J._Phys.__Condens._Matter_30_405702.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/852521/files/Herrmann_2018_J._Phys.__Condens._Matter_30_405702.pdf?subformat=pdfa |x pdfa |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:852521 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)169458 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)145694 |
| 913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-524 |2 G:(DE-HGF)POF3-500 |v Controlling Collective States |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |2 G:(DE-HGF)POF3-600 |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6212 |x 2 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |2 G:(DE-HGF)POF3-600 |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6213 |x 3 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |2 G:(DE-HGF)POF3-600 |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 4 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J PHYS-CONDENS MAT : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-4-20110106 |k PGI-4 |l Streumethoden |x 1 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|