000852522 001__ 852522
000852522 005__ 20240709081859.0
000852522 0247_ $$2doi$$a10.1002/aenm.201801430
000852522 0247_ $$2ISSN$$a1614-6832
000852522 0247_ $$2ISSN$$a1614-6840
000852522 0247_ $$2WOS$$aWOS:000448257300007
000852522 037__ $$aFZJ-2018-05450
000852522 041__ $$aEnglish
000852522 082__ $$a600
000852522 1001_ $$0P:(DE-Juel1)172735$$aChen, Chunguang$$b0$$eCorresponding author
000852522 245__ $$aOrigin of Degradation in Si-Based All-Solid-State Li-Ion Microbatteries
000852522 260__ $$aWeinheim$$bWiley-VCH$$c2018
000852522 3367_ $$2DRIVER$$aarticle
000852522 3367_ $$2DataCite$$aOutput Types/Journal article
000852522 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553871961_25990
000852522 3367_ $$2BibTeX$$aARTICLE
000852522 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852522 3367_ $$00$$2EndNote$$aJournal Article
000852522 520__ $$aLike all rechargeable battery systems, conventional Li‐ion batteries (LIB) inevitably suffer from capacity losses during operation. This also holds for all‐solid‐state LIB. In this contribution an in operando neutron depth profiling method is developed to investigate the degradation mechanism of all‐solid‐state, thin film Si–Li3PO4–LiCoO2 batteries. Important aspects of the long‐term degradation mechanisms are elucidated. It is found that the capacity losses in these thin film batteries are mainly related to lithium immobilization in the solid‐state electrolyte, starting to grow at the anode/electrolyte interface during initial charging. The Li‐immobilization layer in the electrolyte is induced by silicon penetration from the anode into the solid‐state electrolyte and continues to grow at a lower rate during subsequent cycling. X‐ray photoelectron spectroscopy depth profiling and transmission electron microscopy analyses confirm the formation of such immobilization layer, which favorably functions as an ionic conductor for lithium ions. As a result of the immobilization process, the amount of free moveable lithium ions is reduced, leading to the pronounced storage capacity decay. Insights gained from this research shed interesting light on the degradation mechanisms of thin film, all‐solid‐state LIB and facilitate potential interfacial modifications which finally will lead to substantially improved battery performance.
000852522 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000852522 588__ $$aDataset connected to CrossRef
000852522 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000852522 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000852522 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0
000852522 7001_ $$0P:(DE-HGF)0$$aOudenhoven, Jos F. M.$$b1
000852522 7001_ $$0P:(DE-Juel1)173719$$aDanilov, Dmitri$$b2
000852522 7001_ $$0P:(DE-Juel1)164258$$aVezhlev, Egor$$b3
000852522 7001_ $$0P:(DE-HGF)0$$aGao, Lu$$b4
000852522 7001_ $$0P:(DE-HGF)0$$aLi, Na$$b5
000852522 7001_ $$0P:(DE-HGF)0$$aMulder, Fokko M.$$b6
000852522 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b7
000852522 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b8$$eCorresponding author
000852522 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.201801430$$gp. 1801430 -$$n30$$p1801430$$tAdvanced energy materials$$v8$$x1614-6832$$y2018
000852522 909CO $$ooai:juser.fz-juelich.de:852522$$pVDB$$pVDB:MLZ
000852522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172735$$aForschungszentrum Jülich$$b0$$kFZJ
000852522 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172735$$aUni Eindhoven $$b0
000852522 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUni Eindhoven $$b1
000852522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173719$$aForschungszentrum Jülich$$b2$$kFZJ
000852522 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)173719$$aUni Eindhoven $$b2
000852522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164258$$aForschungszentrum Jülich$$b3$$kFZJ
000852522 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Eindhoven University of Technology$$b4
000852522 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aIMDEA Materials Institut, Getafe, Madrid, Spain $$b5
000852522 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUni Delft $$b6
000852522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b7$$kFZJ
000852522 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b7$$kRWTH
000852522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b8$$kFZJ
000852522 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165918$$aUnid Eindhoven $$b8
000852522 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165918$$a Centre for Clean Energy Technology, University of Technology, Sydney, Australia$$b8
000852522 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000852522 9141_ $$y2018
000852522 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852522 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852522 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2015
000852522 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000852522 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852522 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852522 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000852522 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000852522 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV ENERGY MATER : 2015
000852522 920__ $$lyes
000852522 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000852522 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x1
000852522 980__ $$ajournal
000852522 980__ $$aVDB
000852522 980__ $$aI:(DE-Juel1)IEK-9-20110218
000852522 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000852522 980__ $$aUNRESTRICTED
000852522 981__ $$aI:(DE-Juel1)IET-1-20110218