001     852522
005     20240709081859.0
024 7 _ |a 10.1002/aenm.201801430
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a WOS:000448257300007
|2 WOS
037 _ _ |a FZJ-2018-05450
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Chen, Chunguang
|0 P:(DE-Juel1)172735
|b 0
|e Corresponding author
245 _ _ |a Origin of Degradation in Si-Based All-Solid-State Li-Ion Microbatteries
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1553871961_25990
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Like all rechargeable battery systems, conventional Li‐ion batteries (LIB) inevitably suffer from capacity losses during operation. This also holds for all‐solid‐state LIB. In this contribution an in operando neutron depth profiling method is developed to investigate the degradation mechanism of all‐solid‐state, thin film Si–Li3PO4–LiCoO2 batteries. Important aspects of the long‐term degradation mechanisms are elucidated. It is found that the capacity losses in these thin film batteries are mainly related to lithium immobilization in the solid‐state electrolyte, starting to grow at the anode/electrolyte interface during initial charging. The Li‐immobilization layer in the electrolyte is induced by silicon penetration from the anode into the solid‐state electrolyte and continues to grow at a lower rate during subsequent cycling. X‐ray photoelectron spectroscopy depth profiling and transmission electron microscopy analyses confirm the formation of such immobilization layer, which favorably functions as an ionic conductor for lithium ions. As a result of the immobilization process, the amount of free moveable lithium ions is reduced, leading to the pronounced storage capacity decay. Insights gained from this research shed interesting light on the degradation mechanisms of thin film, all‐solid‐state LIB and facilitate potential interfacial modifications which finally will lead to substantially improved battery performance.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Oudenhoven, Jos F. M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Danilov, Dmitri
|0 P:(DE-Juel1)173719
|b 2
700 1 _ |a Vezhlev, Egor
|0 P:(DE-Juel1)164258
|b 3
700 1 _ |a Gao, Lu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Li, Na
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mulder, Fokko M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 7
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 8
|e Corresponding author
773 _ _ |a 10.1002/aenm.201801430
|g p. 1801430 -
|0 PERI:(DE-600)2594556-7
|n 30
|p 1801430
|t Advanced energy materials
|v 8
|y 2018
|x 1614-6832
909 C O |o oai:juser.fz-juelich.de:852522
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172735
910 1 _ |a Uni Eindhoven
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)172735
910 1 _ |a Uni Eindhoven
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173719
910 1 _ |a Uni Eindhoven
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)173719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)164258
910 1 _ |a Eindhoven University of Technology
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a IMDEA Materials Institut, Getafe, Madrid, Spain
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Uni Delft
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)165918
910 1 _ |a Unid Eindhoven
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-Juel1)165918
910 1 _ |a Centre for Clean Energy Technology, University of Technology, Sydney, Australia
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-Juel1)165918
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV ENERGY MATER : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21