000852543 001__ 852543
000852543 005__ 20240712084600.0
000852543 0247_ $$2doi$$a10.1021/acs.inorgchem.8b01781
000852543 0247_ $$2ISSN$$a0020-1669
000852543 0247_ $$2ISSN$$a1520-510X
000852543 0247_ $$2pmid$$apmid:30125085
000852543 0247_ $$2WOS$$aWOS:000443923700076
000852543 037__ $$aFZJ-2018-05463
000852543 082__ $$a540
000852543 1001_ $$0P:(DE-Juel1)168214$$aLi, Haijian$$b0$$ufzj
000852543 245__ $$aFormation of Open Framework Uranium Germanates: The Influence of Mixed Molten Flux and Charge Density Dependence in U-Silicate and U-Germanate Families
000852543 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2018
000852543 3367_ $$2DRIVER$$aarticle
000852543 3367_ $$2DataCite$$aOutput Types/Journal article
000852543 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1538055587_32592
000852543 3367_ $$2BibTeX$$aARTICLE
000852543 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852543 3367_ $$00$$2EndNote$$aJournal Article
000852543 520__ $$aSeven novel open-framework uranyl germanates, K2(UO2)GeO4, K6(UO2)3Ge8O22, α-Cs2(UO2)Ge2O6, β-Cs2(UO2)Ge2O6, Cs2(UO2)GeO4, and A(UO2)3(Ge2O7)2 (A = [NaK6Cl]6+, [Na2Cs6Cl2]6+), were grown from different mixed molten fluxes. The three-dimensional (3D) structure of K2(UO2)GeO4 with 8-ring channels can be built upon [UGe4] pentamer secondary building units (SBUs). The 3D framework of K6(UO2)3Ge8O22 with trapezoid (Ge8O22)12– clusters consists of two types of [UGe4] pentamers. The 3D framework of α-Cs2(UO2)Ge2O6 with 10-ring channels, crystallizing in the P21/n space group, is constructed by [UGe4] pentamers. The structure of β-Cs2(UO2)Ge2O6 contains achter (eight) single germanate chains and is composed of [UGe6] heptamers and [UGe4] pentamers. The structure of Cs2(UO2)GeO4 with hexagonal 10-ring channels is composed of [U3Ge4] heptamers and twisting five-fold GeO4 tetrahedra in four-membered Ge4O12 rings occur. 3D frameworks of NaK6Cl(UO2)3(Ge2O7)2 (space group Pnnm) and Na2Cs6Cl2(UO2)3(Ge2O7)2 (P21/c) can be constructed from the same SBUs [UGe4] pentamers. Thermal stability of salt-inclusions was studied by TG and PXRD analysis. Analysis of charge density for the U–Si–O system indicates that the polymerization of silicate units reduces the cross-links of the 3D frameworks. The concept of SBUs combined with the cutting and gluing strategy was applied to understand and analyze the distinct 8-, 10-, 12-, and 14- membered channels for the uranyl germanate family. The charge density of all known 3D U–Si/Ge–O frameworks has been investigated, which shows strong correlations with chemical composition of corresponding phases. The increase of Si/O (Ge/O) ratios in silicate units results in the decrease of negative charge density. Moreover, the charge density increases with decreasing countercation size within the same Si/O ratio. The correlations can be used to predict inclusion phase formation within U–Si/Ge–O families. Raman spectra of the studied uranyl germanates were measured, and bands were assigned on the basis of structural features.
000852543 536__ $$0G:(DE-HGF)POF3-161$$a161 - Nuclear Waste Management (POF3-161)$$cPOF3-161$$fPOF III$$x0
000852543 536__ $$0G:(DE-HGF)HGF-YIG-Energy$$aHelmholtz Young Investigators Group: Energy (HGF-YIG-Energy)$$cHGF-YIG-Energy$$x1
000852543 588__ $$aDataset connected to CrossRef
000852543 7001_ $$0P:(DE-Juel1)159447$$aLanger, Eike$$b1$$ufzj
000852543 7001_ $$0P:(DE-Juel1)159378$$aKegler, Philip$$b2$$ufzj
000852543 7001_ $$0P:(DE-Juel1)130383$$aModolo, Giuseppe$$b3$$ufzj
000852543 7001_ $$0P:(DE-Juel1)144426$$aAlekseev, Evgeny$$b4$$eCorresponding author$$ufzj
000852543 773__ $$0PERI:(DE-600)1484438-2$$a10.1021/acs.inorgchem.8b01781$$gVol. 57, no. 17, p. 11201 - 11216$$n17$$p11201 - 11216$$tInorganic chemistry$$v57$$x1520-510X$$y2018
000852543 8564_ $$uhttps://juser.fz-juelich.de/record/852543/files/acs.inorgchem.8b01781.pdf$$yRestricted
000852543 8564_ $$uhttps://juser.fz-juelich.de/record/852543/files/acs.inorgchem.8b01781.pdf?subformat=pdfa$$xpdfa$$yRestricted
000852543 909CO $$ooai:juser.fz-juelich.de:852543$$pVDB
000852543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168214$$aForschungszentrum Jülich$$b0$$kFZJ
000852543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159447$$aForschungszentrum Jülich$$b1$$kFZJ
000852543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159378$$aForschungszentrum Jülich$$b2$$kFZJ
000852543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130383$$aForschungszentrum Jülich$$b3$$kFZJ
000852543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144426$$aForschungszentrum Jülich$$b4$$kFZJ
000852543 9131_ $$0G:(DE-HGF)POF3-161$$1G:(DE-HGF)POF3-160$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lNukleare Entsorgung und Sicherheit sowie Strahlenforschung$$vNuclear Waste Management$$x0
000852543 9141_ $$y2018
000852543 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000852543 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINORG CHEM : 2015
000852543 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852543 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852543 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000852543 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000852543 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000852543 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000852543 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000852543 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852543 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852543 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000852543 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000852543 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000852543 980__ $$ajournal
000852543 980__ $$aVDB
000852543 980__ $$aI:(DE-Juel1)IEK-6-20101013
000852543 980__ $$aUNRESTRICTED
000852543 981__ $$aI:(DE-Juel1)IFN-2-20101013