000852577 001__ 852577
000852577 005__ 20240711113529.0
000852577 0247_ $$2doi$$a10.1088/1741-4326/aad481
000852577 0247_ $$2ISSN$$a0029-5515
000852577 0247_ $$2ISSN$$a1741-4326
000852577 0247_ $$2WOS$$aWOS:000441292500001
000852577 0247_ $$2altmetric$$aaltmetric:46306779
000852577 037__ $$aFZJ-2018-05489
000852577 082__ $$a530
000852577 1001_ $$0P:(DE-Juel1)130040$$aHuber, Alexander$$b0$$eCorresponding author
000852577 245__ $$aReal-time protection of the JET ITER-like wall based on near infrared imaging diagnostic systems
000852577 260__ $$aVienna$$bIAEA$$c2018
000852577 3367_ $$2DRIVER$$aarticle
000852577 3367_ $$2DataCite$$aOutput Types/Journal article
000852577 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1538057480_32592
000852577 3367_ $$2BibTeX$$aARTICLE
000852577 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852577 3367_ $$00$$2EndNote$$aJournal Article
000852577 520__ $$aIn JET with ITER-like wall (JET-ILW), the first wall was changed to metallic materials (tungsten and beryllium) [1] which require a reliable protection system to avoid damage of the plasma-facing components (PFCs) due to beryllium melting or cracking of tungsten owing to thermal fatigue. To address this issue, a protection system with real time control, based on imaging diagnostics, has been implemented on JET-ILW in 2011.This paper describes the design, implementation, and operation of the near infrared imaging diagnostic system of the JET-ILW plasma experiment and its integration into the existing JET-ILW protection architecture. The imaging system comprises eleven analogue CCD cameras which demonstrate a high robustness against changes of system parameters like the emissivity. The system covers about two thirds of the main chamber wall and almost half of the divertor. A real-time imaging processing unit is used to convert the raw data into surface temperatures taking into account the different emissivity for the various materials and correcting for artefacts resulting e.g. from neutron impact. Regions of interest (ROI) on the selected PFCs are analysed in real time and the maximum temperature measured for each ROI is sent to other real time systems to trigger an appropriate response of the plasma control system, depending on the location of a hot spot.A hot spot validation algorithm was successfully integrated into the real-time system and is now used to avoid false alarms caused by neutrons and dust. The design choices made for the video imaging system, the implications for the hardware components and the calibration procedure are discussed. It will be demonstrated that the video imaging protection system can work properly under harsh electromagnetic conditions as well as under neutron and gamma radiation. Examples will be shown of instances of hot spot detection that abort the plasma discharge. The limits of the protection system and the associated constraints on plasma operation are also presented.The real-time protection system has been operating routinely since 2011. During this period, less than 0.5% of the terminated discharges were aborted by a malfunction of the system. About 2%–3% of the discharges were terminated due to the detection of actual hot spots.
000852577 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000852577 588__ $$aDataset connected to CrossRef
000852577 7001_ $$0P:(DE-HGF)0$$aKinna, D.$$b1
000852577 7001_ $$0P:(DE-Juel1)132145$$aHuber, V.$$b2$$ufzj
000852577 7001_ $$0P:(DE-HGF)0$$aArnoux, G.$$b3
000852577 7001_ $$0P:(DE-Juel1)130158$$aSergienko, G.$$b4
000852577 7001_ $$0P:(DE-HGF)0$$aBalboa, I.$$b5
000852577 7001_ $$0P:(DE-HGF)0$$aBalorin, C.$$b6
000852577 7001_ $$0P:(DE-HGF)0$$aCarman, P.$$b7
000852577 7001_ $$0P:(DE-HGF)0$$aCarvalho, P.$$b8
000852577 7001_ $$0P:(DE-HGF)0$$aCollins, S.$$b9
000852577 7001_ $$0P:(DE-HGF)0$$aConway, N.$$b10
000852577 7001_ $$0P:(DE-HGF)0$$aMcCullen, P.$$b11
000852577 7001_ $$0P:(DE-HGF)0$$aDrenik, A.$$b12
000852577 7001_ $$0P:(DE-Juel1)130043$$aJachmich, S.$$b13
000852577 7001_ $$0P:(DE-HGF)0$$aJouve, M.$$b14
000852577 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b15
000852577 7001_ $$0P:(DE-Juel1)174134$$aLomanowski, B.$$b16$$ufzj
000852577 7001_ $$0P:(DE-HGF)0$$aLomas, P. J.$$b17
000852577 7001_ $$0P:(DE-HGF)0$$aLowry, C. G.$$b18
000852577 7001_ $$00000-0001-7208-2613$$aMaggi, C. F.$$b19
000852577 7001_ $$0P:(DE-HGF)0$$aMatthews, G. F.$$b20
000852577 7001_ $$0P:(DE-HGF)0$$aMeigs, A.$$b21
000852577 7001_ $$0P:(DE-Juel1)4596$$aMertens, Ph.$$b22
000852577 7001_ $$0P:(DE-HGF)0$$aNunes, I.$$b23
000852577 7001_ $$0P:(DE-HGF)0$$aPrice, M.$$b24
000852577 7001_ $$0P:(DE-HGF)0$$aPuglia, P.$$b25
000852577 7001_ $$0P:(DE-HGF)0$$aRiccardo, V.$$b26
000852577 7001_ $$0P:(DE-HGF)0$$aRimini, F. G.$$b27
000852577 7001_ $$0P:(DE-HGF)0$$aWiddowson, A.$$b28
000852577 7001_ $$0P:(DE-HGF)0$$aZastrow, K.-D.$$b29
000852577 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/aad481$$gVol. 58, no. 10, p. 106021 -$$n10$$p106021 -$$tNuclear fusion$$v58$$x1741-4326$$y2018
000852577 8564_ $$uhttps://juser.fz-juelich.de/record/852577/files/Huber_2018_Nucl._Fusion_58_106021.pdf$$yRestricted
000852577 8564_ $$uhttps://juser.fz-juelich.de/record/852577/files/Huber_2018_Nucl._Fusion_58_106021.pdf?subformat=pdfa$$xpdfa$$yRestricted
000852577 909CO $$ooai:juser.fz-juelich.de:852577$$pVDB
000852577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich$$b0$$kFZJ
000852577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132145$$aForschungszentrum Jülich$$b2$$kFZJ
000852577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130158$$aForschungszentrum Jülich$$b4$$kFZJ
000852577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130043$$aForschungszentrum Jülich$$b13$$kFZJ
000852577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b15$$kFZJ
000852577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174134$$aForschungszentrum Jülich$$b16$$kFZJ
000852577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4596$$aForschungszentrum Jülich$$b22$$kFZJ
000852577 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000852577 9141_ $$y2018
000852577 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000852577 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000852577 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2015
000852577 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852577 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000852577 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000852577 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000852577 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000852577 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852577 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852577 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000852577 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000852577 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000852577 980__ $$ajournal
000852577 980__ $$aVDB
000852577 980__ $$aI:(DE-Juel1)IEK-4-20101013
000852577 980__ $$aUNRESTRICTED
000852577 981__ $$aI:(DE-Juel1)IFN-1-20101013