001     852577
005     20240711113529.0
024 7 _ |a 10.1088/1741-4326/aad481
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a WOS:000441292500001
|2 WOS
024 7 _ |a altmetric:46306779
|2 altmetric
037 _ _ |a FZJ-2018-05489
082 _ _ |a 530
100 1 _ |a Huber, Alexander
|0 P:(DE-Juel1)130040
|b 0
|e Corresponding author
245 _ _ |a Real-time protection of the JET ITER-like wall based on near infrared imaging diagnostic systems
260 _ _ |a Vienna
|c 2018
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1538057480_32592
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In JET with ITER-like wall (JET-ILW), the first wall was changed to metallic materials (tungsten and beryllium) [1] which require a reliable protection system to avoid damage of the plasma-facing components (PFCs) due to beryllium melting or cracking of tungsten owing to thermal fatigue. To address this issue, a protection system with real time control, based on imaging diagnostics, has been implemented on JET-ILW in 2011.This paper describes the design, implementation, and operation of the near infrared imaging diagnostic system of the JET-ILW plasma experiment and its integration into the existing JET-ILW protection architecture. The imaging system comprises eleven analogue CCD cameras which demonstrate a high robustness against changes of system parameters like the emissivity. The system covers about two thirds of the main chamber wall and almost half of the divertor. A real-time imaging processing unit is used to convert the raw data into surface temperatures taking into account the different emissivity for the various materials and correcting for artefacts resulting e.g. from neutron impact. Regions of interest (ROI) on the selected PFCs are analysed in real time and the maximum temperature measured for each ROI is sent to other real time systems to trigger an appropriate response of the plasma control system, depending on the location of a hot spot.A hot spot validation algorithm was successfully integrated into the real-time system and is now used to avoid false alarms caused by neutrons and dust. The design choices made for the video imaging system, the implications for the hardware components and the calibration procedure are discussed. It will be demonstrated that the video imaging protection system can work properly under harsh electromagnetic conditions as well as under neutron and gamma radiation. Examples will be shown of instances of hot spot detection that abort the plasma discharge. The limits of the protection system and the associated constraints on plasma operation are also presented.The real-time protection system has been operating routinely since 2011. During this period, less than 0.5% of the terminated discharges were aborted by a malfunction of the system. About 2%–3% of the discharges were terminated due to the detection of actual hot spots.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kinna, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Huber, V.
|0 P:(DE-Juel1)132145
|b 2
|u fzj
700 1 _ |a Arnoux, G.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sergienko, G.
|0 P:(DE-Juel1)130158
|b 4
700 1 _ |a Balboa, I.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Balorin, C.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Carman, P.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Carvalho, P.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Collins, S.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Conway, N.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a McCullen, P.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Drenik, A.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Jachmich, S.
|0 P:(DE-Juel1)130043
|b 13
700 1 _ |a Jouve, M.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 15
700 1 _ |a Lomanowski, B.
|0 P:(DE-Juel1)174134
|b 16
|u fzj
700 1 _ |a Lomas, P. J.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Lowry, C. G.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Maggi, C. F.
|0 0000-0001-7208-2613
|b 19
700 1 _ |a Matthews, G. F.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Meigs, A.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Mertens, Ph.
|0 P:(DE-Juel1)4596
|b 22
700 1 _ |a Nunes, I.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Price, M.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Puglia, P.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Riccardo, V.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Rimini, F. G.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Widdowson, A.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Zastrow, K.-D.
|0 P:(DE-HGF)0
|b 29
773 _ _ |a 10.1088/1741-4326/aad481
|g Vol. 58, no. 10, p. 106021 -
|0 PERI:(DE-600)2037980-8
|n 10
|p 106021 -
|t Nuclear fusion
|v 58
|y 2018
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/852577/files/Huber_2018_Nucl._Fusion_58_106021.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/852577/files/Huber_2018_Nucl._Fusion_58_106021.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:852577
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130040
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132145
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)130043
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)174134
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)4596
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21