001     852581
005     20240711113529.0
024 7 _ |a 10.1016/j.nimb.2018.05.037
|2 doi
024 7 _ |a 0168-583X
|2 ISSN
024 7 _ |a 0168-583x
|2 ISSN
024 7 _ |a 1872-9584
|2 ISSN
024 7 _ |a WOS:000439682600005
|2 WOS
037 _ _ |a FZJ-2018-05493
082 _ _ |a 530
100 1 _ |a Matveev, D.
|0 P:(DE-Juel1)8998
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Reaction-diffusion modeling of hydrogen transport and surface effects in application to single-crystalline Be
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1538058404_32592
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A model based on a reaction-diffusion approach is used to simulate thermal desorption experiments performed with ion beam exposed single-crystalline beryllium. The model describes deuterium retention, migration and release, relating microscopic material properties to desorption spectra observed in experiments. Multiple trapping at single vacancies, hydrogen accumulation on the surface and surface coverage dependent desorption are accounted for in the model, showing good qualitative agreement with experimental observations.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wensing, M.
|0 P:(DE-Juel1)168184
|b 1
700 1 _ |a Ferry, L.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Virot, F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Barrachin, M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ferro, Y.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 6
|u fzj
773 _ _ |a 10.1016/j.nimb.2018.05.037
|g Vol. 430, p. 23 - 30
|0 PERI:(DE-600)1466524-4
|p 23 - 30
|t Nuclear instruments & methods in physics research / B
|v 430
|y 2018
|x 0168-583X
856 4 _ |u https://juser.fz-juelich.de/record/852581/files/1-s2.0-S0168583X18303537-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/852581/files/1-s2.0-S0168583X18303537-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:852581
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)8998
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL INSTRUM METH B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21