000852604 001__ 852604
000852604 005__ 20210129235143.0
000852604 0247_ $$2doi$$a10.1016/j.jplph.2018.04.012
000852604 0247_ $$2ISSN$$a0176-1617
000852604 0247_ $$2ISSN$$a1618-1328
000852604 0247_ $$2pmid$$apmid:29735177
000852604 0247_ $$2WOS$$aWOS:000439100400002
000852604 0247_ $$2altmetric$$aaltmetric:49642694
000852604 037__ $$aFZJ-2018-05508
000852604 041__ $$aEnglish
000852604 082__ $$a580
000852604 1001_ $$0P:(DE-HGF)0$$aDamm, A.$$b0$$eCorresponding author
000852604 245__ $$aRemote sensing of plant-water relations: An overview and future perspectives
000852604 260__ $$aMünchen$$bElsevier$$c2018
000852604 3367_ $$2DRIVER$$aarticle
000852604 3367_ $$2DataCite$$aOutput Types/Journal article
000852604 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1539238448_30019
000852604 3367_ $$2BibTeX$$aARTICLE
000852604 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852604 3367_ $$00$$2EndNote$$aJournal Article
000852604 520__ $$aVegetation is a highly dynamic component of the Earth surface and substantially alters the water cycle. Particularly the process of oxygenic plant photosynthesis determines vegetation connecting the water and carbon cycle and causing various interactions and feedbacks across Earth spheres. While vegetation impacts the water cycle, it reacts to changing water availability via functional, biochemical and structural responses. Unravelling the resulting complex feedbacks and interactions between the plant-water system and environmental change is essential for any modelling approaches and predictions, but still insufficiently understood due to currently missing observations. We hypothesize that an appropriate cross-scale monitoring of plant-water relations can be achieved by combined observational and modelling approaches. This paper reviews suitable remote sensing approaches to assess plant-water relations ranging from pure observational to combined observational-modelling approaches. We use a combined energy balance and radiative transfer model to assess the explanatory power of pure observational approaches focussing on plant parameters to estimate plant-water relations, followed by an outline for a more effective use of remote sensing by their integration into soil-plant-atmosphere continuum (SPAC) models. We apply a mechanistic model simulating water movement in the SPAC to reveal insight into the complexity of relations between soil, plant and atmospheric parameters, and thus plant-water relations. We conclude that future research should focus on strategies combining observations and mechanistic modelling to advance our knowledge on the interplay between the plant-water system and environmental change, e.g. through plant transpiration.
000852604 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000852604 588__ $$aDataset connected to CrossRef
000852604 7001_ $$0P:(DE-HGF)0$$aPaul-Limoges, E.$$b1
000852604 7001_ $$0P:(DE-HGF)0$$aHaghighi, E.$$b2
000852604 7001_ $$0P:(DE-HGF)0$$aSimmer, C.$$b3
000852604 7001_ $$0P:(DE-HGF)0$$aMorsdorf, F.$$b4
000852604 7001_ $$0P:(DE-HGF)0$$aSchneider, F. D.$$b5
000852604 7001_ $$0P:(DE-HGF)0$$avan der Tol, C.$$b6
000852604 7001_ $$0P:(DE-HGF)0$$aMigliavacca, M.$$b7
000852604 7001_ $$0P:(DE-Juel1)129388$$aRascher, U.$$b8$$eLast author$$ufzj
000852604 773__ $$0PERI:(DE-600)2029184-X$$a10.1016/j.jplph.2018.04.012$$gVol. 227, p. 3 - 19$$p3 - 19$$tJournal of plant physiology$$v227$$x0176-1617$$y2018
000852604 8564_ $$uhttps://juser.fz-juelich.de/record/852604/files/1-s2.0-S0176161718301172-main.pdf$$yRestricted
000852604 8564_ $$uhttps://juser.fz-juelich.de/record/852604/files/1-s2.0-S0176161718301172-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000852604 909CO $$ooai:juser.fz-juelich.de:852604$$pVDB
000852604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b8$$kFZJ
000852604 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000852604 9141_ $$y2018
000852604 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000852604 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852604 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000852604 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PLANT PHYSIOL : 2015
000852604 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852604 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000852604 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000852604 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000852604 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000852604 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852604 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852604 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000852604 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000852604 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000852604 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000852604 920__ $$lyes
000852604 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000852604 980__ $$ajournal
000852604 980__ $$aVDB
000852604 980__ $$aI:(DE-Juel1)IBG-2-20101118
000852604 980__ $$aUNRESTRICTED