000852608 001__ 852608
000852608 005__ 20240712100913.0
000852608 0247_ $$2doi$$a10.5194/acp-2018-20
000852608 0247_ $$2ISSN$$a1680-7367
000852608 0247_ $$2ISSN$$a1680-7375
000852608 0247_ $$2Handle$$a2128/19722
000852608 0247_ $$2altmetric$$aaltmetric:32462119
000852608 037__ $$aFZJ-2018-05512
000852608 082__ $$a550
000852608 1001_ $$0P:(DE-HGF)0$$aSourdeval, Odran$$b0$$eCorresponding author
000852608 245__ $$aIce crystal number concentration estimates from lidar-radar satellite remote sensing. Part 1: Method and evaluation
000852608 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000852608 3367_ $$2DRIVER$$aarticle
000852608 3367_ $$2DataCite$$aOutput Types/Journal article
000852608 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1538046273_7846
000852608 3367_ $$2BibTeX$$aARTICLE
000852608 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852608 3367_ $$00$$2EndNote$$aJournal Article
000852608 520__ $$aThe number concentration of cloud particles is a key quantity for understanding aerosol-cloud interactions and describing clouds in climate and numerical weather prediction models. In contrast with recent advances for liquid clouds, few observational constraints exist on the ice crystal number concentration (Ni). This study investigates how combined lidar-radar measurements can be used to provide satellite estimates of Ni, using a methodology that constrains moments of a parameterized particle size distribution (PSD). The operational liDAR-raDAR (DARDAR) product serves as an existing base for this method, which focuses on ice clouds with temperatures Tc<−30°C. Theoretical considerations demonstrate the capability for accurate retrievals of Ni, apart from a possible bias in the concentration in small crystals when Tc≳−50°C, due to the assumption of a monomodal PSD shape in the current method. This is verified by comparing satellite estimates to co-incident in situ measurements, which additionally demonstrates the sufficient sensitivity of lidar-radar observations to Ni. Following these results, satellite estimates of Ni are evaluated in the context of a case study and a preliminary climatological analysis based on 10 years of global data. Despite of a lack of other large-scale references, this evaluation shows a reasonable physical consistency in Ni spatial distribution patterns. Notably, increases in Ni are found towards cold temperatures and, more significantly, in the presence of strong updraughts, such as those related to convective or orographic uplifts. Further evaluation and improvements of this method are necessary but these results already constitute a first encouraging step towards large-scale observational constraints for Ni. Part two of this series uses this new dataset to examine the controls on Ni.
000852608 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000852608 588__ $$aDataset connected to CrossRef
000852608 7001_ $$00000-0002-3815-4756$$aGryspeerdt, Edward$$b1
000852608 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b2
000852608 7001_ $$0P:(DE-HGF)0$$aGoren, Tom$$b3
000852608 7001_ $$0P:(DE-HGF)0$$aDelanoë, Julien$$b4
000852608 7001_ $$0P:(DE-Juel1)129108$$aAfchine, Armin$$b5$$ufzj
000852608 7001_ $$00000-0002-2840-8687$$aHemmer, Friederike$$b6
000852608 7001_ $$00000-0001-7057-194X$$aQuaas, Johannes$$b7
000852608 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2018-20$$gp. 1 - 31$$p1 - 31$$tAtmospheric chemistry and physics / Discussions$$v $$x1680-7375$$y2018
000852608 8564_ $$uhttps://juser.fz-juelich.de/record/852608/files/acp-2018-20.pdf$$yOpenAccess
000852608 8564_ $$uhttps://juser.fz-juelich.de/record/852608/files/acp-2018-20.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000852608 909CO $$ooai:juser.fz-juelich.de:852608$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000852608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b2$$kFZJ
000852608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129108$$aForschungszentrum Jülich$$b5$$kFZJ
000852608 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000852608 9141_ $$y2018
000852608 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000852608 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000852608 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000852608 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000852608 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000852608 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852608 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000852608 9801_ $$aFullTexts
000852608 980__ $$ajournal
000852608 980__ $$aVDB
000852608 980__ $$aUNRESTRICTED
000852608 980__ $$aI:(DE-Juel1)IEK-7-20101013
000852608 981__ $$aI:(DE-Juel1)ICE-4-20101013