001     852608
005     20240712100913.0
024 7 _ |a 10.5194/acp-2018-20
|2 doi
024 7 _ |a 1680-7367
|2 ISSN
024 7 _ |a 1680-7375
|2 ISSN
024 7 _ |a 2128/19722
|2 Handle
024 7 _ |a altmetric:32462119
|2 altmetric
037 _ _ |a FZJ-2018-05512
082 _ _ |a 550
100 1 _ |a Sourdeval, Odran
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Ice crystal number concentration estimates from lidar-radar satellite remote sensing. Part 1: Method and evaluation
260 _ _ |a Katlenburg-Lindau
|c 2018
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1538046273_7846
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The number concentration of cloud particles is a key quantity for understanding aerosol-cloud interactions and describing clouds in climate and numerical weather prediction models. In contrast with recent advances for liquid clouds, few observational constraints exist on the ice crystal number concentration (Ni). This study investigates how combined lidar-radar measurements can be used to provide satellite estimates of Ni, using a methodology that constrains moments of a parameterized particle size distribution (PSD). The operational liDAR-raDAR (DARDAR) product serves as an existing base for this method, which focuses on ice clouds with temperatures Tc<−30°C. Theoretical considerations demonstrate the capability for accurate retrievals of Ni, apart from a possible bias in the concentration in small crystals when Tc≳−50°C, due to the assumption of a monomodal PSD shape in the current method. This is verified by comparing satellite estimates to co-incident in situ measurements, which additionally demonstrates the sufficient sensitivity of lidar-radar observations to Ni. Following these results, satellite estimates of Ni are evaluated in the context of a case study and a preliminary climatological analysis based on 10 years of global data. Despite of a lack of other large-scale references, this evaluation shows a reasonable physical consistency in Ni spatial distribution patterns. Notably, increases in Ni are found towards cold temperatures and, more significantly, in the presence of strong updraughts, such as those related to convective or orographic uplifts. Further evaluation and improvements of this method are necessary but these results already constitute a first encouraging step towards large-scale observational constraints for Ni. Part two of this series uses this new dataset to examine the controls on Ni.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gryspeerdt, Edward
|0 0000-0002-3815-4756
|b 1
700 1 _ |a Krämer, Martina
|0 P:(DE-Juel1)129131
|b 2
700 1 _ |a Goren, Tom
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Delanoë, Julien
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Afchine, Armin
|0 P:(DE-Juel1)129108
|b 5
|u fzj
700 1 _ |a Hemmer, Friederike
|0 0000-0002-2840-8687
|b 6
700 1 _ |a Quaas, Johannes
|0 0000-0001-7057-194X
|b 7
773 _ _ |a 10.5194/acp-2018-20
|g p. 1 - 31
|0 PERI:(DE-600)2069857-4
|p 1 - 31
|t Atmospheric chemistry and physics / Discussions
|v
|y 2018
|x 1680-7375
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/852608/files/acp-2018-20.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/852608/files/acp-2018-20.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:852608
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129131
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129108
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21