001     852609
005     20240712100913.0
024 7 _ |a 10.5194/gmd-2018-62
|2 doi
024 7 _ |a 2128/19723
|2 Handle
024 7 _ |a altmetric:34282725
|2 altmetric
037 _ _ |a FZJ-2018-05513
082 _ _ |a 910
100 1 _ |a Bacer, Sara
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds into the EMAC model (based on MESSy 2.53)
260 _ _ |a Katlenburg-Lindau
|c 2018
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1538046430_7583
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A comprehensive ice nucleation parameterization has been implemented in the global chemistry-climate model EMAC to realistically represent ice crystal number concentrations. The parameterization of Barahona and Nenes (2009, hereafter BN09) allows the treatment of ice nucleation, taking into account the competition for water vapour between homogeneous and heterogeneous nucleation and pre-existing ice crystals in cold clouds. Furthermore, the influence of chemically-heterogeneous, polydisperse aerosols is considered via multiple ice nucleating particle spectra, which are included in the parameterization to compute the heterogeneously formed ice crystals. BN09 has been implemented to operate both in the cirrus and in the mixed-phase regimes. Compared to the standard EMAC results, BN09 produces fewer ice crystals in the upper troposphere but higher ice crystal number concentrations in the middle troposphere, especially in the Northern Hemisphere where ice nucleating mineral dust particles are relatively abundant. The comparison with a climatological data set of aircraft measurements shows that BN09 used in the cirrus regime improves the model results and, therefore, is recommended for future EMAC simulations.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
700 1 _ |a Sullivan, Sylvia C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Karydis, Vlassis A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Barahona, Donifan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Krämer, Martina
|0 P:(DE-Juel1)129131
|b 4
|u fzj
700 1 _ |a Nenes, Athanasios
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Tost, Holger
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Tsimpidi, Alxandra P.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Lelieveld, Jos
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Pozzer, Andrea
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.5194/gmd-2018-62
|0 PERI:(DE-600)2456729-2
|p
|t Geoscientific model development discussions
|v
|y 2018
|x 1991-9611
856 4 _ |u https://juser.fz-juelich.de/record/852609/files/gmd-2018-62.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:852609
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129131
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21