001     852611
005     20250129092359.0
024 7 _ |a 2128/21132
|2 Handle
024 7 _ |a 10.23919/PIERS.2018.8597984
|2 doi
037 _ _ |a FZJ-2018-05515
041 _ _ |a English
100 1 _ |a Flammia, Ivan
|0 P:(DE-Juel1)169145
|b 0
|e Corresponding author
111 2 _ |a The 40th Progress In Electromagnetics Research Symposium
|g PIERS 2018
|c Toyama
|d 2018-08-01 - 2018-08-04
|w Japan
245 _ _ |a Optimization of Current Collector Design for Operando X-band-EPR Investigations of Lithium-Ion Batteries Using Numerical Simulations
260 _ _ |c 2018
300 _ _ |a 3A0-28
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1549003263_7207
|2 PUB:(DE-HGF)
520 _ _ |a Monitoring the operation of lithium-ion batteries using electron paramagnetic resonance (EPR) is a powerful tool for gaining a better understanding of the redox processes and degradation mechanisms in anode and cathode materials. For this purpose, a complete operational cell, including current collectors, must be placed into the region of maximum magnetic field and minimum electric field of the specific resonance mode established in the EPR cavity. The homogeneity of the microwave (MW) magnetic field in the measurement region is essential to perform accurate quantitative measurements. Furthermore, the samples, the current collectors, and the dielectric holders should be confined within a region with negligible electrical field, to prevent unwanted power dissipation and to avoid a reduction of the cavity quality factor. Current collectors represent a major problem in the EPR characterization of battery cells, as the introduction of conducting elements into the resonator affects the electromagnetic field distribution, thus altering the EPR spectra, or prevents their acquisition altogether.Furthermore, the collectors should not excessively cover the battery surface, as this would shield the MW field at the position occupied by the active materials in the cell. On the other hand, they should be evenly distributed over the surface of the cell to prevent the establishment of transversal electrical gradients and guarantee a homogenous development of electrochemical processes. In this paper, we discuss the simulation results for various circular current collector geometries with a diameter of 7 mm, suitable for operando X-band-EPR measurements of battery cells in a Bruker Elexsys E540 spectrometer. A commercial 4108 TMHS cylindrical resonator is operated using the TM110 mode in order to excite and monitor the EPR resonances. The designs take into account practical manufacturability considerations: The collectors are specifically engineered to be easily integrated into the assembly, using substrates which are EPR silent and chemically inert against the battery materials.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
700 1 _ |a Mester, Achim
|0 P:(DE-Juel1)140421
|b 1
700 1 _ |a Niemöller, Arvid
|0 P:(DE-Juel1)166446
|b 2
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 3
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 4
773 _ _ |a 10.23919/PIERS.2018.8597984
856 4 _ |u https://ieeexplore.ieee.org/document/8597984
856 4 _ |u https://juser.fz-juelich.de/record/852611/files/Flammia%20-%20Conference%20Poster%20PIERS2018.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/852611/files/Flammia%20-%20Conference%20Poster%20PIERS2018.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/852611/files/Flammia%20-%20PIERS2018%20-%20submitted%20paper.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/852611/files/Flammia%20-%20PIERS2018%20-%20submitted%20paper.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:852611
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169145
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)140421
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166446
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162401
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 1
980 1 _ |a FullTexts
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21