000852616 001__ 852616
000852616 005__ 20220930130158.0
000852616 0247_ $$2doi$$a10.1007/s11104-018-3787-2
000852616 0247_ $$2ISSN$$a0032-079X
000852616 0247_ $$2ISSN$$a1573-5036
000852616 0247_ $$2Handle$$a2128/21591
000852616 0247_ $$2WOS$$aWOS:000458270300004
000852616 0247_ $$2altmetric$$aaltmetric:48872542
000852616 037__ $$aFZJ-2018-05520
000852616 041__ $$aEnglish
000852616 082__ $$a570
000852616 1001_ $$0P:(DE-Juel1)151189$$aRobles-Aguilar, Ana A.$$b0
000852616 245__ $$aThe effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a recycled phosphorus source
000852616 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2019
000852616 3367_ $$2DRIVER$$aarticle
000852616 3367_ $$2DataCite$$aOutput Types/Journal article
000852616 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549959518_26321
000852616 3367_ $$2BibTeX$$aARTICLE
000852616 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852616 3367_ $$00$$2EndNote$$aJournal Article
000852616 520__ $$aAims: Phosphorus (P) recovery from specific waste streams is necessary to develop environmentally sustainable and efficient fertilizers, achieving maximum productivity with minimum losses. A promising example of a P-recovery product is struvite (MgNH4PO4⋅6H2O). Phosphorus availability from struvite is profoundly influenced by soil pH and/or processes in the rhizosphere. Root exudates (e.g., organic anions) and root morphology affect fertilizer bioavailability. The overall objective of our study was to identify root morphological and physiological traits of the narrow-leaf lupine (Lupinus angustifolius L. subsp. angustifolius, cultivar: blau “Boregine”) involved in the acquisition of P from struvite, compared with KH2PO4 as a soluble P source. The study included different pH conditions, as soil pH is one of the main factors affecting P availability.Methods: Narrow-leaf lupine plants were grown in river sand under three pH conditions (4.5, 6.5 and 7.5). Three different P treatment conditions were used: 1) KH2PO4 (KP); 2) MgNH4PO4⋅6H2O (Struvite), both supplied at 15 μg P g−1 dry sand; and 3) no P addition (Nil-P), as control. Organic acids in the rhizosheath were collected. Root morphological parameters such as specific root length and root diameter were analyzed.Results: There was no significant difference in total plant biomass detected under any pH condition between struvite and KP treatments. In both acidic and alkaline conditions, the P-uptake efficiency (PUE: mg P plant−1/cm2 root surface area) with struvite was significantly greater than with KP. At neutral pH, there was no difference in PUE between plants supplied with KP or struvite. Plants growing at neutral pH showed greater root exudation of carboxylates (mainly citrate) when struvite was added compared with KP. At alkaline pH, the exudation per unit root surface area was greater than that at acidic or neutral pH. Plants growing in acidic pH had a higher specific root length (SRL) compared with those grown at alkaline or neutral pH.Conclusions: Similar P-uptake efficiency from struvite and KH2PO4 at neutral pH in conjunction with the higher total biomass compared to the Nil-P treatment (70% higher) suggests very effective mobilization of P from struvite by carboxylate exudation. Application of struvite, while taking into account the different strategies for nutrient mobilization, can increase the use efficiency of this recovered P source.
000852616 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000852616 536__ $$0G:(EU-Grant)603744$$aMANUREECOMINE - Green fertilizer upcycling from manure: Technological, economic and environmental sustainability demonstration (603744)$$c603744$$fFP7-ENV-2013-two-stage$$x1
000852616 588__ $$aDataset connected to CrossRef
000852616 7001_ $$00000-0002-8127-645X$$aPang, Jiayin$$b1
000852616 7001_ $$0P:(DE-Juel1)144879$$aPostma, Johannes A.$$b2
000852616 7001_ $$0P:(DE-Juel1)166424$$aSchrey, Silvia D.$$b3
000852616 7001_ $$00000-0002-4118-2272$$aLambers, Hans$$b4
000852616 7001_ $$0P:(DE-Juel1)129475$$aJablonowski, Nicolai D.$$b5$$eCorresponding author
000852616 773__ $$0PERI:(DE-600)1478535-3$$a10.1007/s11104-018-3787-2$$n1-2$$p65-78$$tPlant and soil$$v434$$x0032-079X$$y2019
000852616 8564_ $$uhttps://juser.fz-juelich.de/record/852616/files/20180926161116748.pdf
000852616 8564_ $$uhttps://juser.fz-juelich.de/record/852616/files/20180926161116748.pdf?subformat=pdfa$$xpdfa
000852616 8564_ $$uhttps://juser.fz-juelich.de/record/852616/files/Robles-Aguilar2019_Article_TheEffectOfPHOnMorphologicalAn.pdf$$yOpenAccess
000852616 8564_ $$uhttps://juser.fz-juelich.de/record/852616/files/Robles-Aguilar2019_Article_TheEffectOfPHOnMorphologicalAn.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000852616 8767_ $$82936124908$$92018-09-21$$d2018-09-26$$eHybrid-OA$$jZahlung erfolgt$$p8308491
000852616 909CO $$ooai:juser.fz-juelich.de:852616$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000852616 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852616 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000852616 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000852616 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000852616 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT SOIL : 2015
000852616 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852616 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000852616 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852616 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000852616 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000852616 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000852616 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000852616 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000852616 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000852616 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852616 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000852616 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000852616 9141_ $$y2019
000852616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151189$$aForschungszentrum Jülich$$b0$$kFZJ
000852616 9101_ $$0I:(DE-HGF)0$$60000-0002-8127-645X$$aExternal Institute$$b1$$kExtern
000852616 9101_ $$0I:(DE-HGF)0$$60000-0002-8127-645X$$aSchool of Agriculture and Environment, and the UWA Institute of Agriculture, TheUniversity ofWestern Australia, Perth,WA6001, Australia$$b1
000852616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144879$$aForschungszentrum Jülich$$b2$$kFZJ
000852616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166424$$aForschungszentrum Jülich$$b3$$kFZJ
000852616 9101_ $$0I:(DE-HGF)0$$60000-0002-4118-2272$$aExternal Institute$$b4$$kExtern
000852616 9101_ $$0I:(DE-HGF)0$$60000-0002-4118-2272$$aSchool of Biological Sciences, and Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia$$b4
000852616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129475$$aForschungszentrum Jülich$$b5$$kFZJ
000852616 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000852616 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000852616 980__ $$ajournal
000852616 980__ $$aVDB
000852616 980__ $$aUNRESTRICTED
000852616 980__ $$aI:(DE-Juel1)IBG-2-20101118
000852616 980__ $$aAPC
000852616 9801_ $$aAPC
000852616 9801_ $$aFullTexts