001     852623
005     20210129235147.0
024 7 _ |a 10.1117/12.2322720
|2 doi
024 7 _ |a WOS:000452820000009
|2 WOS
037 _ _ |a FZJ-2018-05521
100 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 0
|e Corresponding author
111 2 _ |a Spintronics XI
|c San Diego
|d 2018-08-19 - 2018-08-23
|w United States
245 _ _ |a Phase-coherent transport in topological insulator nanocolumns and nanoribbons
260 _ _ |c 2018
|b SPIE
295 1 0 |a Spintronics XI : [Proceedings] - SPIE, 2018. - ISBN 97815106203539781510620360 - doi:10.1117/12.2322720
300 _ _ |a 107320V-1
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1538403996_27599
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a The transport properties of topological insulator nanostructures prepared by selective-area molecular beam epitaxy is investigated. For the nanocolumn structures based on Sb2Te3/Bi2Te3-heterostructures pronounced universal conductance fluctuations are observed in the magnetoconductance, indicating phase-coherent transport. Furthermore, angle-dependent measurements indicate that the phase coherent loops are mainly oriented parallel to the substrate plane. Measurements on nanoribbons based on (Bi0.57Sb0.43)2Te3 revealed a resistance dip due to weak antilocalization as well as universal conductance fluctuations. Here, we also found indications, that the phase-coherent loops are predominantly oriented parallel to the quintuple layers forming the topological insulator.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
700 1 _ |a Weyrich, Christian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rosenbach, Daniel
|0 P:(DE-Juel1)167347
|b 2
|u fzj
700 1 _ |a Kölzer, Jonas
|0 P:(DE-Juel1)172619
|b 3
|u fzj
700 1 _ |a Schüffelgen, Peter
|0 P:(DE-Juel1)165984
|b 4
|u fzj
700 1 _ |a Mussler, Gregor
|0 P:(DE-Juel1)128617
|b 5
|u fzj
700 1 _ |a Jalil, Abdur Rehman
|0 P:(DE-Juel1)171826
|b 6
|u fzj
700 1 _ |a Lüth, Hans
|0 P:(DE-Juel1)128608
|b 7
|u fzj
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 8
|u fzj
700 1 _ |a Schmitt, Tobias
|0 P:(DE-Juel1)171406
|b 9
|u fzj
700 1 _ |a Schleenvoigt, Michael
|0 P:(DE-Juel1)171405
|b 10
|u fzj
700 1 _ |a Jaffrès, Henri
|0 P:(DE-HGF)0
|b 11
|e Editor
700 1 _ |a Drouhin, Henri-Jean
|0 P:(DE-HGF)0
|b 12
|e Editor
700 1 _ |a Wegrowe, Jean-Eric
|0 P:(DE-HGF)0
|b 13
|e Editor
700 1 _ |a Razeghi, Manijeh
|0 P:(DE-HGF)0
|b 14
|e Editor
773 _ _ |a 10.1117/12.2322720
856 4 _ |u https://juser.fz-juelich.de/record/852623/files/107320V.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/852623/files/107320V.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:852623
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)128634
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)167347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172619
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165984
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)171826
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128608
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)171406
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)171405
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21