000852736 001__ 852736
000852736 005__ 20240711085647.0
000852736 0247_ $$2doi$$a10.1039/C8TA04019B
000852736 0247_ $$2ISSN$$a2050-7488
000852736 0247_ $$2ISSN$$a2050-7496
000852736 0247_ $$2WOS$$aWOS:000448412000040
000852736 037__ $$aFZJ-2018-05608
000852736 082__ $$a540
000852736 1001_ $$0P:(DE-Juel1)176132$$aLeonard, Kwati$$b0$$eCorresponding author
000852736 245__ $$aEfficient intermediate-temperature steam electrolysis with Y : SrZrO 3 –SrCeO 3 and Y : BaZrO 3 –BaCeO 3 proton conducting perovskites
000852736 260__ $$aLondon [u.a.]$$bRSC$$c2018
000852736 3367_ $$2DRIVER$$aarticle
000852736 3367_ $$2DataCite$$aOutput Types/Journal article
000852736 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544521421_27764
000852736 3367_ $$2BibTeX$$aARTICLE
000852736 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852736 3367_ $$00$$2EndNote$$aJournal Article
000852736 520__ $$aCeramic proton conductors have the potential to become important components in future clean and efficient energy technologies. In this manuscript, barium cerium yttrium zirconate (Ba(Zr0.5Ce0.4)8/9Y0.2O2.9) and strontium cerium yttrium zirconate (SrZr0.5Ce0.4Y0.1O2.95), proton conducting perovskites were employed as solid oxide electrolysis cell (SOEC) electrolytes for hydrogen production via intermediate temperature steam electrolysis at 550 and 600 °C. Cathode-supported button cells examined for a 12 μm Ba(Zr0.5Ce0.4)8/9Y0.2O2.9 electrolyte, with Ni–SrZr0.5Ce0.4Y0.1O2.95 as the H2-electrode, and porous Ba0.5La0.5CoO3 as the anode reached current densities of 0.2 and 0.5 A cm−2 with applied voltage of 1.45 V, at 550 and 600 °C, respectively. Moreover, a hydrogen evolution rate of 127 μmol cm−2 per minute was achieved at 0.5 A cm−2, translating to a current efficiency of 82%. In addition, excellent cell performance was obtained using SrZr0.5Ce0.4Y0.1O2.95 as an electrolyte. Current densities of 0.2 and 0.5 A cm−2 were obtained at 600 °C with applied voltages of 1.28 and 1.63 V, achieving faradaic current efficiencies of 88 and 85%. The NiO–SrZr0.5Ce0.4Y0.1O3−δ composite cathode was more favorable for the densification of the supported Ba(Zr0.5Ce0.4)8/9Y0.2O2.9 electrolyte during sintering and could be promising for use as a cathode substrate in proton-conducting SOECs.
000852736 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000852736 588__ $$aDataset connected to CrossRef
000852736 7001_ $$0P:(DE-HGF)0$$aOkuyama, Yuji$$b1
000852736 7001_ $$0P:(DE-HGF)0$$aTakamura, Yasuhiro$$b2
000852736 7001_ $$0P:(DE-HGF)0$$aLee, Young-Sung$$b3
000852736 7001_ $$0P:(DE-HGF)0$$aMiyazaki, Kuninori$$b4
000852736 7001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya$$b5
000852736 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm Albert$$b6
000852736 7001_ $$0P:(DE-HGF)0$$aMatsumoto, Hiroshige$$b7$$eCorresponding author
000852736 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/C8TA04019B$$gp. 10.1039.C8TA04019B$$p19113-19124$$tJournal of materials chemistry / A$$v6$$x2050-7496$$y2018
000852736 8564_ $$uhttps://juser.fz-juelich.de/record/852736/files/c8ta04019b-1.pdf$$yRestricted
000852736 8564_ $$uhttps://juser.fz-juelich.de/record/852736/files/c8ta04019b-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000852736 909CO $$ooai:juser.fz-juelich.de:852736$$pVDB
000852736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176132$$aForschungszentrum Jülich$$b0$$kFZJ
000852736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b5$$kFZJ
000852736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b6$$kFZJ
000852736 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000852736 9141_ $$y2018
000852736 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000852736 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852736 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2015
000852736 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852736 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000852736 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000852736 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852736 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852736 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000852736 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000852736 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER CHEM A : 2015
000852736 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000852736 980__ $$ajournal
000852736 980__ $$aVDB
000852736 980__ $$aI:(DE-Juel1)IEK-1-20101013
000852736 980__ $$aUNRESTRICTED
000852736 981__ $$aI:(DE-Juel1)IMD-2-20101013