000852737 001__ 852737
000852737 005__ 20240610115332.0
000852737 0247_ $$2doi$$a10.1103/PhysRevE.98.022605
000852737 0247_ $$2ISSN$$a1063-651X
000852737 0247_ $$2ISSN$$a1095-3787
000852737 0247_ $$2ISSN$$a1539-3755
000852737 0247_ $$2ISSN$$a1550-2376
000852737 0247_ $$2ISSN$$a2470-0045
000852737 0247_ $$2ISSN$$a2470-0053
000852737 0247_ $$2Handle$$a2128/19743
000852737 0247_ $$2pmid$$apmid:30253508
000852737 0247_ $$2WOS$$aWOS:000441466800008
000852737 0247_ $$2altmetric$$aaltmetric:45264891
000852737 037__ $$aFZJ-2018-05609
000852737 082__ $$a530
000852737 1001_ $$0P:(DE-HGF)0$$aAbaurrea Velasco, Clara$$b0
000852737 245__ $$aCollective behavior of self-propelled rods with quorum sensing
000852737 260__ $$aWoodbury, NY$$bInst.$$c2018
000852737 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2018-08-13
000852737 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2018-08-01
000852737 3367_ $$2DRIVER$$aarticle
000852737 3367_ $$2DataCite$$aOutput Types/Journal article
000852737 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552414038_13872
000852737 3367_ $$2BibTeX$$aARTICLE
000852737 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852737 3367_ $$00$$2EndNote$$aJournal Article
000852737 520__ $$aActive agents—like phoretic particles, bacteria, sperm, and cytoskeletal filaments in motility assays—show a large variety of motility-induced collective behaviors, such as aggregation, clustering, and phase separation. The behavior of dense suspensions of engineered phoretic particles and of bacteria during biofilm formation is determined by two qualitatively different physical mechanisms: (i) volume exclusion (short-range steric repulsion) and (ii) quorum sensing (longer-range reduced propulsion due to alteration of the local chemical environment). To systematically characterize such systems, we study semi-penetrable self-propelled rods in two dimensions, with a propulsion force that decreases with increasing local rod density, by employing Brownian dynamics simulations. Volume exclusion and quorum sensing both lead to phase separation; however, the structure of the systems and the rod dynamics vastly differ. Quorum sensing enhances the polarity of the clusters, induces perpendicularity of rods at the cluster borders, and enhances cluster formation. For systems where the rods essentially become passive at high densities, formation of asters and stripes is observed. Systems of rods with larger aspect ratios show more ordered structures compared to those with smaller aspect ratios, due to their stronger alignment, with almost circular asters for strongly density-dependent propulsion force. With increasing range of the quorum-sensing interaction, the local density decreases, asters become less stable, and polar hedgehog clusters and clusters with domains appear.
000852737 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000852737 536__ $$0G:(DE-Juel1)jiff26_20110501$$aHydrodynamics of Active Biological Systems (jiff26_20110501)$$cjiff26_20110501$$fHydrodynamics of Active Biological Systems$$x1
000852737 542__ $$2Crossref$$i2018-08-13$$uhttps://link.aps.org/licenses/aps-default-license
000852737 542__ $$2Crossref$$i2019-08-13$$uhttps://link.aps.org/licenses/aps-default-accepted-manuscript-license
000852737 588__ $$aDataset connected to CrossRef
000852737 7001_ $$0P:(DE-Juel1)157746$$aAbkenar, Masoud$$b1
000852737 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2$$eCorresponding author$$ufzj
000852737 7001_ $$0P:(DE-Juel1)130514$$aAuth, Thorsten$$b3$$eCorresponding author$$ufzj
000852737 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.98.022605$$bAmerican Physical Society (APS)$$d2018-08-13$$n2$$p022605$$tPhysical Review E$$v98$$x2470-0045$$y2018
000852737 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.98.022605$$gVol. 98, no. 2, p. 022605$$n2$$p022605$$tPhysical review / E$$v98$$x2470-0045$$y2018
000852737 8564_ $$uhttps://juser.fz-juelich.de/record/852737/files/PhysRevE.98.022605.pdf$$yOpenAccess
000852737 8564_ $$uhttps://juser.fz-juelich.de/record/852737/files/PhysRevE.98.022605.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000852737 909CO $$ooai:juser.fz-juelich.de:852737$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000852737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000852737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130514$$aForschungszentrum Jülich$$b3$$kFZJ
000852737 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000852737 9141_ $$y2018
000852737 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852737 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000852737 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000852737 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000852737 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852737 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000852737 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852737 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000852737 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000852737 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000852737 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2015
000852737 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852737 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000852737 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000852737 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000852737 9801_ $$aFullTexts
000852737 980__ $$ajournal
000852737 980__ $$aVDB
000852737 980__ $$aI:(DE-Juel1)ICS-2-20110106
000852737 980__ $$aI:(DE-82)080012_20140620
000852737 980__ $$aUNRESTRICTED
000852737 981__ $$aI:(DE-Juel1)IBI-5-20200312
000852737 981__ $$aI:(DE-Juel1)IAS-2-20090406
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.228102
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/78/5/056601
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C5SM01678A
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms8729
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2012.03.004
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.74.030904
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.77.011920
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.88.062314
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/105/48004
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C3SM52813H
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C7SM00439G
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1402202111
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.248001
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c2sm25186h
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c1sm05960b
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.128101
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C5SM01683E
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/107/36003
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.82.031904
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature09312
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature10874
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep34146
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1128/JB.188.1.305-316.2006
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1046/j.1365-2958.2002.02803.x
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.198102
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1209042
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1001994107
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.fl.21.010189.000425
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.84.061401
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C3SM27949A
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-fluid-122414-034456
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/119/66007
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1230020
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.268303
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcis.2014.03.003
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.86.011901
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-conmatphys-031214-014710
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.248101
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1704928
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.50.1232
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.42.2126
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.92.012322
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10955-014-1008-9
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.158102
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjst/e2014-02191-1
000852737 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.81.061916